On the limit distribution of the number of vertices in the levels of a Galton–Watson tree
Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 430-437 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Galton–Watson trees formed by a critical branching process are considered. The distribution of the number of immediate descendants of the particles in the process has infinite variance. The limit distribution of the number of vertices in the lower layers of a tree is found as the number of vertices approaches infinity.
Keywords: Galton–Watson tree, critical branching process, tree layer
Mots-clés : limit distribution.
@article{MZM_2024_116_3_a7,
     author = {Yu. L. Pavlov},
     title = {On the limit distribution of the number of vertices in the levels of {a~Galton{\textendash}Watson} tree},
     journal = {Matemati\v{c}eskie zametki},
     pages = {430--437},
     year = {2024},
     volume = {116},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a7/}
}
TY  - JOUR
AU  - Yu. L. Pavlov
TI  - On the limit distribution of the number of vertices in the levels of a Galton–Watson tree
JO  - Matematičeskie zametki
PY  - 2024
SP  - 430
EP  - 437
VL  - 116
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a7/
LA  - ru
ID  - MZM_2024_116_3_a7
ER  - 
%0 Journal Article
%A Yu. L. Pavlov
%T On the limit distribution of the number of vertices in the levels of a Galton–Watson tree
%J Matematičeskie zametki
%D 2024
%P 430-437
%V 116
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a7/
%G ru
%F MZM_2024_116_3_a7
Yu. L. Pavlov. On the limit distribution of the number of vertices in the levels of a Galton–Watson tree. Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 430-437. http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a7/

[1] Yu. L. Pavlov, “Maksimalnoe derevo sluchainogo lesa v konfiguratsionnom grafe”, Matem. sb., 212:9 (2021), 146–163 | DOI

[2] V. F. Kolchin, Sluchainye otobrazheniya, Nauka, M., 1984 | MR

[3] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984 | MR

[4] V. M. Zolotarev, “Utochnenie ryada teorem teorii vetvyaschikhsya sluchainykh protsessov”, Teoriya veroyatn. i ee primen., 2:2 (1957), 256–266

[5] R. S. Slack, “A branching process with mean one and possibly infinite variance”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9 (1968), 139–145 | DOI | MR

[6] Yu. L. Pavlov, “O maksimalnom dereve lesa Galtona–Vatsona s beskonechnoi dispersiei raspredeleniya chisla potomkov”, Diskret. matem., 35:2 (2023), 78–92 | DOI

[7] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye sluchainye velichiny, Nauka, M., 1965 | MR

[8] I. G. Shevtsova, “Preobrazovanie smescheniya kvadrata veroyatnostnogo raspredeleniya s prilozheniyami”, Dokl. AN, 451:1 (2013), 14–16 | DOI