Symmetric hyperbolic trap
Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 372-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An arbitrary $C^1$ diffeomorphism $f$ from an open subset $U$ of a Riemannian $m$-manifold $M$, $m\geqslant 2$, to a set $f(U)\subset M$ is considered. Sufficient conditions for the domain $U$ to be a hyperbolic trap are proposed. This means that any set $A\subset U$ satisfying the condition $f(A)=A$ is automatically a hyperbolic set of the diffeomorphism $f$. Moreover, this hyperbolic trap is symmetric in the sense that the conditions for its existence do not change under the passage from $f$ to the inverse map $f^{-1}$.
Keywords: diffeomorphism, manifold, hyperbolic trap.
Mots-clés : invariant set
@article{MZM_2024_116_3_a3,
     author = {S. D. Glyzin and A. Yu. Kolesov},
     title = {Symmetric hyperbolic trap},
     journal = {Matemati\v{c}eskie zametki},
     pages = {372--387},
     year = {2024},
     volume = {116},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a3/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - Symmetric hyperbolic trap
JO  - Matematičeskie zametki
PY  - 2024
SP  - 372
EP  - 387
VL  - 116
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a3/
LA  - ru
ID  - MZM_2024_116_3_a3
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%T Symmetric hyperbolic trap
%J Matematičeskie zametki
%D 2024
%P 372-387
%V 116
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a3/
%G ru
%F MZM_2024_116_3_a3
S. D. Glyzin; A. Yu. Kolesov. Symmetric hyperbolic trap. Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 372-387. http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a3/

[1] S. Smeil, “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (151) (1970), 113–185 | MR

[2] D. V. Anosov, V. V. Solodov, “Giperbolicheskie mnozhestva”, Dinamicheskie sistemy – 9, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 66, VINITI, M., 1991, 12–99 | MR

[3] D. V. Anosov, Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN SSSR, 90, ed. I. G. Petrovskii, 1967, 211 pp.

[4] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR

[5] A. B. Katok, B. Khasselblat, Vvedenie v teoriyu dinamicheskikh sistem s obzorom poslednikh dostizhenii, MTsNMO, M., 2005

[6] S. Yu. Pilyugin, Prostranstva dinamicheskikh sistem, RKhD, M.–Izhevsk, 2008 | MR

[7] V. Z. Grines, O. V. Pochinka, Vvedenie v topologicheskuyu klassifikatsiyu kaskadov na mnogoobraziyakh razmernosti dva i tri, RKhD, M.–Izhevsk, 2011

[8] V. Grines, E. Zhuzhoma, Surface laminations and chaotic dynamical systems, Izhevsk Institute of Computer Science, M.–Izhevsk, 2021

[9] Zh. Palis, V. di Melu, Geometricheskaya teoriya dinamicheskikh sistem: vvedenie, Mir, M., 1986 | MR

[10] Ya. B. Pesin, Lektsii po teorii chastichnoi giperbolichnosti i ustoichivoi ergodichnosti, MTsNMO, M., 2006 | MR

[11] C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1999 | MR

[12] J. Palis, F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge Stud. Adv. Math., 35, Cambridge Univ. Press, Cambridge, 1993 | MR

[13] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “O nekotorykh dostatochnykh usloviyakh giperbolichnosti”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Trudy MIAN, 308, MIAN, M., 2020, 116–134 | DOI | MR

[14] V. Afraimovich, S.-B. Hsu, Lectures on Chaotic Dynamical Systems, AMS/IP Stud. Adv. Math., 28, Amer. Math. Soc., Providence, RI, 2003 | MR

[15] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Solenoidalnye attraktory diffeomorfizmov koltsevykh mnozhestv”, UMN, 75:2 (452) (2020), 3–60 | DOI | MR | Zbl

[16] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “O giperbolichnosti endomorfizmov tora”, Matem. zametki, 105:2 (2019), 251–268 | DOI | MR

[17] S. D. Glyzin, A. Yu. Kolesov, “Kriterii giperbolichnosti endomorfizmov tora”, Matem. zametki, 111:1 (2022), 134–139 | DOI | MR

[18] V. Chigarev, A. O. Kazakov, A. S. Pikovsky, “Kantorovich–Rubinstein–Wasserstein distance between overlapping attractor and repeller”, Chaos, 30:7 (2020), 073114 | MR

[19] S. V. Gonchenko, M. N. Kainov, A. O. Kazakov, D. V. Turaev, “O metodakh proverki psevdogiperbolichnosti strannykh attraktorov”, Izvestiya vuzov. PND, 29:1 (2021), 160–185 | DOI

[20] S. D. Glyzin, A. Yu. Kolesov, “O nekotorykh modifikatsiyakh otobrazheniya “kot Arnolda””, Dokl. RAN. Matem., inform., prots. upr., 500 (2021), 26–30 | DOI | Zbl

[21] V. S. Afraimovich, V. V. Bykov, L. P. Shilnikov, “O vozniknovenii i strukture attraktora Lorentsa”, Dokl. AN SSSR, 234:2 (1977), 336–339 | MR | Zbl

[22] V. S. Afraimovich, V. V. Bykov, L. P. Shilnikov, “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. MMO, 44, Izd-vo Mosk. un-ta, M., 1982, 150–212 | MR | Zbl

[23] I. Ovsyannikov, D. Turaev, “Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model”, Nonlinearity, 30:1 (2016), 115–137 | DOI | MR