Asymptotics of the solution of the Dirichlet problem for the Laplace equation in a strip with thin branches
Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 355-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies the asymptotic behavior of the solution to the Dirichlet problem for the Laplace operator in a domain obtained from an infinite horizontal strip by connecting a vertical infinite half-strip of small width. Using the methods of potential theory, the problem is reduced to an integral equation on the boundary of the domain. The Schwarz alternating method is applied to the obtained equation in a appropriate Banach space. The solution is expressed in terms of “reflection operators”. The formula for one of such operators can be obtained only under additional restrictive conditions on the right-hand side of the equation, which consist in the finiteness of certain weight norms.
Keywords: boundary-value problems, asymptotic methods in potential theory, Schwarz alternating method.
@article{MZM_2024_116_3_a2,
     author = {A. M. Budylin and S. B. Levin and T. S. Yurova},
     title = {Asymptotics of the solution of the {Dirichlet} problem for the {Laplace} equation in a strip with thin branches},
     journal = {Matemati\v{c}eskie zametki},
     pages = {355--371},
     year = {2024},
     volume = {116},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a2/}
}
TY  - JOUR
AU  - A. M. Budylin
AU  - S. B. Levin
AU  - T. S. Yurova
TI  - Asymptotics of the solution of the Dirichlet problem for the Laplace equation in a strip with thin branches
JO  - Matematičeskie zametki
PY  - 2024
SP  - 355
EP  - 371
VL  - 116
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a2/
LA  - ru
ID  - MZM_2024_116_3_a2
ER  - 
%0 Journal Article
%A A. M. Budylin
%A S. B. Levin
%A T. S. Yurova
%T Asymptotics of the solution of the Dirichlet problem for the Laplace equation in a strip with thin branches
%J Matematičeskie zametki
%D 2024
%P 355-371
%V 116
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a2/
%G ru
%F MZM_2024_116_3_a2
A. M. Budylin; S. B. Levin; T. S. Yurova. Asymptotics of the solution of the Dirichlet problem for the Laplace equation in a strip with thin branches. Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 355-371. http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a2/

[1] V. Kozlov, V. G. Mazia, A. B. Movchan, Asymptotic Analysis of Fields in Multi-Structures, Oxford Math. Monogr., The Clarendon Press, New York, 1999 | MR

[2] S. A. Nazarov, “Neravenstva Korna dlya uprugikh sochlenenii massivnykh tel, tonkikh plastin i sterzhnei”, UMN, 63:1 (379) (2008), 37–110 | DOI | MR | Zbl

[3] Král, “Boundary regularity and normal derivatives of logarithmic potentials”, Proc. Roy. Soc. Edinburgh Sect. A, 106:3–4 (1987), 241–258 | DOI | MR

[4] G. C. Hsiao, W. L. Wendland, Boundary Integral Equations, Appl. Math. Sci., 164, Springer, Cham, 2021 | MR

[5] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991 | MR

[6] D. Kolton, R. Kress, Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987 | MR

[7] A. M. Budylin, V. S. Buslaev, “Reflection operators and their applications to asymptotic investigations of semiclassical integral equations”, Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989–1990), Adv. Soviet Math., 7, AMS, Providence, RI, 1991, 107–157 | MR

[8] A. M. Budylin, V. S. Buslaev, “Kvaziklassicheskaya asimptotika rezolventy integralnogo operatora svertki s sinus-yadrom na konechnom intervale”, Algebra i analiz, 7:6 (1995), 79–103 | MR | Zbl

[9] A. V. Omelchenko, Metody integralnykh preobrazovanii v zadachakh matematicheskoi fiziki, MTsNMO, M., 2010

[10] I. Ts. Gokhberg, N. Ya. Krupnik, Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973 | MR

[11] Z. Presdorf, Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR