Mots-clés : CLUR-space.
@article{MZM_2024_116_3_a1,
author = {A. R. Alimov and I. G. Tsar'kov},
title = {Classical concepts of approximation theory in asymmetric {CLUR-spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {339--354},
year = {2024},
volume = {116},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a1/}
}
A. R. Alimov; I. G. Tsar'kov. Classical concepts of approximation theory in asymmetric CLUR-spaces. Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 339-354. http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a1/
[1] A. R. Alimov, I. G. Tsar'kov, “Connectedness and approximative properties of sets in asymmetric spaces”, Filomat, 38:9 (2024), 3243–3259 | MR
[2] V. Donjuán, N. Jonard-Pérez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math., 43:4 (2020), 467–491 | DOI | MR
[3] G. A. Akishev, “Neravenstvo raznykh metrik Nikolskogo dlya trigonometricheskikh polinomov v prostranstve so smeshannoi nesimmetrichnoi normoi”, Tr. IMM UrO RAN, 29:4 (2023), 11–26 | DOI | MR
[4] G. E. Ivanov, M. S. Lopushanski, M .O. Golubev, “The nearest point theorem for weakly convex sets in asymmetric seminormed spaces”, Optimization and Applications, Commun. Comput. Inf. Sci., 974, Springer, Cham, 2019, 21–34 | DOI | MR
[5] A. I. Kozko, “O poryadke nailuchshego priblizheniya v prostranstvakh s nesimmetrichnoi normoi i znakochuvstvitelnym vesom na klassakh differentsiruemykh funktsii”, Izv. RAN. Ser. matem., 66:1 (2002), 103–132 | DOI | MR | Zbl
[6] A. R. Alimov, I. G. Tsar'kov, “Suns, moons, and $\mathring B$-complete sets in asymmetric spaces”, Set-Valued Var. Anal., 30:3 (2022), 1233–1245 | DOI | MR
[7] A. R. Alimov, I. G. Tsar'kov, “Smoothness of subspace sections of the unit balls of $C(Q)$ and $L^1$”, J. Approx. Theory, 265 (2021), 105552–8 | DOI | MR
[8] I. G. Tsarkov, “Nepreryvnye vyborki iz mnogoznachnykh otobrazhenii i approksimatsiya v nesimmetrichnykh i polulineinykh prostranstvakh”, Izv. RAN. Ser. matem., 87:4 (2023), 205–224 | DOI | MR
[9] F. Deutsch, J. M. Lambert, “On continuity of metric projections”, J. Approx. Theory, 29:2 (1980), 116–131 | DOI | MR | Zbl
[10] E. V. Oshman, “Chebyshevskie mnozhestva i nepreryvnost metricheskoi proektsii”, Izv. vuzov. Matem., 1970, no. 9, 78–82 | MR | Zbl
[11] B. B. Panda, O. P. Kapoor, “Approximative compactness and continuity of metric projections”, Bull. Austral. Math. Soc., 11:1 (1974), 47–55 | DOI | MR
[12] A. R. Alimov, I. G. Tsar'kov, Geometric Approximation Theory, Springer Monogr. Math., Springer, Cham, 2021 | MR
[13] I. G. Tsarkov, “Plotnost tochek nepreryvnosti metricheskoi funktsii i proektsii v nesimmetrichnykh prostranstvakh”, Matem. zametki, 112:6 (2022), 924–934 | DOI
[14] L. P. Vlasov, “O chebyshevskikh i approksimativno vypuklykh mnozhestvakh”, Matem. zametki, 2:2 (1967), 191–200 | MR | Zbl
[15] I. G. Tsarkov, “O svyaznosti nekotorykh klassov mnozhestv v banakhovykh prostranstvakh”, Matem. zametki, 40:2 (1986), 174–196 | MR | Zbl
[16] A. R. Alimov, I. G. Tsarkov, “Approksimativno kompaktnye mnozhestva v nesimmetrichno normirovannykh prostranstvakh Efimova–Stechkina i vypuklost pochti solnts”, Matem. zametki, 110:6 (2021), 916–921 | DOI | MR
[17] I. G. Tsarkov, “$\theta$-metricheskaya funktsiya v zadache minimizatsii funktsionalov”, Izv. RAN. Ser. matem., 88:2 (2024), 184–205 | DOI | MR
[18] I. G. Tsar'kov, “Smoothness of solutions of the eikonal equation and regular points of their level surfaces”, Russ. J. Math. Phys., 30:2 (2023), 259–269 | DOI | MR
[19] A. R. Alimov, I. G. Tsar'kov, “Max-solar properties of sets in normed and asymmetrically normed spaces”, J. Convex Anal., 30:1 (2023), 159–174 | MR
[20] I. G. Tsarkov, “Chebyshevskie mnozhestva s kusochno-nepreryvnoi metricheskoi proektsiei”, Matem. zametki, 113:6 (2023), 905–917 | DOI
[21] I. G. Tsar'kov, “Estimates of the Chebyshev radius in terms of the MAX-metric function and the MAX-projection operator”, Russ. J. Math. Physics, 30:1 (2023), 128–134 | DOI | MR
[22] A. R. Alimov, I. G. Tsar'kov, “Chebyshev unions of planes, and their approximative and geometric properties”, J. Approx. Theory, 298 (2024), 106009 | DOI | MR