Classical concepts of approximation theory in asymmetric CLUR-spaces
Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 339-354 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Approximative compactness and stability of the metric projection, which are classical concepts of approximation theory, are extended to asymmetric spaces. Most emphasis here is placed on the classes (CLUR) and (CCLUR) of asymmetric spaces. New concepts of OR-stability, $\pi$-solarity, and regular approximative compactness are introduced.
Keywords: asymmetric norm, approximatively compact set, OR-stability, $\pi$-sun
Mots-clés : CLUR-space.
@article{MZM_2024_116_3_a1,
     author = {A. R. Alimov and I. G. Tsar'kov},
     title = {Classical concepts of approximation theory in asymmetric {CLUR-spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {339--354},
     year = {2024},
     volume = {116},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a1/}
}
TY  - JOUR
AU  - A. R. Alimov
AU  - I. G. Tsar'kov
TI  - Classical concepts of approximation theory in asymmetric CLUR-spaces
JO  - Matematičeskie zametki
PY  - 2024
SP  - 339
EP  - 354
VL  - 116
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a1/
LA  - ru
ID  - MZM_2024_116_3_a1
ER  - 
%0 Journal Article
%A A. R. Alimov
%A I. G. Tsar'kov
%T Classical concepts of approximation theory in asymmetric CLUR-spaces
%J Matematičeskie zametki
%D 2024
%P 339-354
%V 116
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a1/
%G ru
%F MZM_2024_116_3_a1
A. R. Alimov; I. G. Tsar'kov. Classical concepts of approximation theory in asymmetric CLUR-spaces. Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 339-354. http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a1/

[1] A. R. Alimov, I. G. Tsar'kov, “Connectedness and approximative properties of sets in asymmetric spaces”, Filomat, 38:9 (2024), 3243–3259 | MR

[2] V. Donjuán, N. Jonard-Pérez, “Separation axioms and covering dimension of asymmetric normed spaces”, Quaest. Math., 43:4 (2020), 467–491 | DOI | MR

[3] G. A. Akishev, “Neravenstvo raznykh metrik Nikolskogo dlya trigonometricheskikh polinomov v prostranstve so smeshannoi nesimmetrichnoi normoi”, Tr. IMM UrO RAN, 29:4 (2023), 11–26 | DOI | MR

[4] G. E. Ivanov, M. S. Lopushanski, M .O. Golubev, “The nearest point theorem for weakly convex sets in asymmetric seminormed spaces”, Optimization and Applications, Commun. Comput. Inf. Sci., 974, Springer, Cham, 2019, 21–34 | DOI | MR

[5] A. I. Kozko, “O poryadke nailuchshego priblizheniya v prostranstvakh s nesimmetrichnoi normoi i znakochuvstvitelnym vesom na klassakh differentsiruemykh funktsii”, Izv. RAN. Ser. matem., 66:1 (2002), 103–132 | DOI | MR | Zbl

[6] A. R. Alimov, I. G. Tsar'kov, “Suns, moons, and $\mathring B$-complete sets in asymmetric spaces”, Set-Valued Var. Anal., 30:3 (2022), 1233–1245 | DOI | MR

[7] A. R. Alimov, I. G. Tsar'kov, “Smoothness of subspace sections of the unit balls of $C(Q)$ and $L^1$”, J. Approx. Theory, 265 (2021), 105552–8 | DOI | MR

[8] I. G. Tsarkov, “Nepreryvnye vyborki iz mnogoznachnykh otobrazhenii i approksimatsiya v nesimmetrichnykh i polulineinykh prostranstvakh”, Izv. RAN. Ser. matem., 87:4 (2023), 205–224 | DOI | MR

[9] F. Deutsch, J. M. Lambert, “On continuity of metric projections”, J. Approx. Theory, 29:2 (1980), 116–131 | DOI | MR | Zbl

[10] E. V. Oshman, “Chebyshevskie mnozhestva i nepreryvnost metricheskoi proektsii”, Izv. vuzov. Matem., 1970, no. 9, 78–82 | MR | Zbl

[11] B. B. Panda, O. P. Kapoor, “Approximative compactness and continuity of metric projections”, Bull. Austral. Math. Soc., 11:1 (1974), 47–55 | DOI | MR

[12] A. R. Alimov, I. G. Tsar'kov, Geometric Approximation Theory, Springer Monogr. Math., Springer, Cham, 2021 | MR

[13] I. G. Tsarkov, “Plotnost tochek nepreryvnosti metricheskoi funktsii i proektsii v nesimmetrichnykh prostranstvakh”, Matem. zametki, 112:6 (2022), 924–934 | DOI

[14] L. P. Vlasov, “O chebyshevskikh i approksimativno vypuklykh mnozhestvakh”, Matem. zametki, 2:2 (1967), 191–200 | MR | Zbl

[15] I. G. Tsarkov, “O svyaznosti nekotorykh klassov mnozhestv v banakhovykh prostranstvakh”, Matem. zametki, 40:2 (1986), 174–196 | MR | Zbl

[16] A. R. Alimov, I. G. Tsarkov, “Approksimativno kompaktnye mnozhestva v nesimmetrichno normirovannykh prostranstvakh Efimova–Stechkina i vypuklost pochti solnts”, Matem. zametki, 110:6 (2021), 916–921 | DOI | MR

[17] I. G. Tsarkov, “$\theta$-metricheskaya funktsiya v zadache minimizatsii funktsionalov”, Izv. RAN. Ser. matem., 88:2 (2024), 184–205 | DOI | MR

[18] I. G. Tsar'kov, “Smoothness of solutions of the eikonal equation and regular points of their level surfaces”, Russ. J. Math. Phys., 30:2 (2023), 259–269 | DOI | MR

[19] A. R. Alimov, I. G. Tsar'kov, “Max-solar properties of sets in normed and asymmetrically normed spaces”, J. Convex Anal., 30:1 (2023), 159–174 | MR

[20] I. G. Tsarkov, “Chebyshevskie mnozhestva s kusochno-nepreryvnoi metricheskoi proektsiei”, Matem. zametki, 113:6 (2023), 905–917 | DOI

[21] I. G. Tsar'kov, “Estimates of the Chebyshev radius in terms of the MAX-metric function and the MAX-projection operator”, Russ. J. Math. Physics, 30:1 (2023), 128–134 | DOI | MR

[22] A. R. Alimov, I. G. Tsar'kov, “Chebyshev unions of planes, and their approximative and geometric properties”, J. Approx. Theory, 298 (2024), 106009 | DOI | MR