On the compactness of integral operators with homogeneous kernels in local Morrey spaces
Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 327-338 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In local Morrey spaces we consider an operator that is the product of a multidimensional integral operator and operators of multiplication by essentially bounded functions. At the same time, we assume that the kernel of the integral operator is homogeneous of degree $(-n)$ and invariant under all rotations. Sufficient conditions are obtained for the compactness of such an operator. We also study the compactness of an operator with a homogeneous kernel and bounded characteristic.
Keywords: local Morrey space, integral operator, homogeneous kernel, multiplication operator, compactness.
@article{MZM_2024_116_3_a0,
     author = {O. G. Avsyankin and S. S. Ashihmin},
     title = {On the compactness of integral operators with homogeneous kernels in local {Morrey} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {327--338},
     year = {2024},
     volume = {116},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
AU  - S. S. Ashihmin
TI  - On the compactness of integral operators with homogeneous kernels in local Morrey spaces
JO  - Matematičeskie zametki
PY  - 2024
SP  - 327
EP  - 338
VL  - 116
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a0/
LA  - ru
ID  - MZM_2024_116_3_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%A S. S. Ashihmin
%T On the compactness of integral operators with homogeneous kernels in local Morrey spaces
%J Matematičeskie zametki
%D 2024
%P 327-338
%V 116
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a0/
%G ru
%F MZM_2024_116_3_a0
O. G. Avsyankin; S. S. Ashihmin. On the compactness of integral operators with homogeneous kernels in local Morrey spaces. Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 327-338. http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a0/

[1] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl

[2] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl

[3] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR

[4] T. Kato, “Strong solutions of the Navier-Stokes equation in Morrey spaces”, Bol. Soc. Brasil. Mat. (N.S.), 22:2 (1992), 127–155 | DOI | MR

[5] D. R. Adams, Morrey Spaces, Lect. Notes Appl. Numer. Harmon. Anal., Birkhäuser, Cham, 2015 | MR

[6] V. I. Burenkov, T. V. Tararykova, “Analog neravenstva Yunga dlya svertok funktsii dlya obschikh prostranstv tipa Morri”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Sbornik statei, Trudy MIAN, 293, Nauka, M., 2016, 113–132 | DOI | MR

[7] O. G. Avsyankin, “Kompaktnost nekotorykh klassov operatorov tipa svertki v obobschennykh prostranstvakh Morri”, Matem. zametki, 104:3 (2018), 336–344 | DOI | MR

[8] O. G. Avsyankin, “Ob obratimosti operatorov tipa svertki v prostranstvakh Morri”, Izv. vuzov. Matem., 2019, no. 6, 3–10 | DOI

[9] N. Karapetiants, S. Samko, Equations with Involutive Operators, Birkhäuser, Boston, MA, 2001 | MR

[10] O. G. Avsyankin, “O $C^*$-algebre, porozhdennoi mnogomernymi integralnymi operatorami s odnorodnymi yadrami i operatorami multiplikativnogo sdviga”, Dokl. RAN, 419:6 (2008), 727–728 | MR

[11] O. G. Avsyankin, “O $C^*$-algebre integralnykh operatorov s odnorodnymi yadrami i ostsilliruyuschimi koeffitsientami”, Matem. zametki, 99:3 (2016), 323–332 | DOI | MR

[12] O. G. Avsyankin, “Ob integralnykh operatorakh s odnorodnymi yadrami v vesovykh prostranstvakh Lebega na gruppe Geizenberga”, Matem. zametki, 114:1 (2023), 144–148 | DOI | MR

[13] N. Samko, “Integral operators commuting with dilations and rotations in generalized Morrey-type spaces”, Math. Methods Appl. Sci., 43:16 (2020), 1–19 | DOI | MR

[14] N. A. Bokayev, V. I. Burenkov, D. T. Matin, “On precompactness of a set in general local and global Morrey-type spaces”, Eurasian Math. J., 8:3 (2017), 109–115 | MR