@article{MZM_2024_116_3_a0,
author = {O. G. Avsyankin and S. S. Ashihmin},
title = {On the compactness of integral operators with homogeneous kernels in local {Morrey} spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {327--338},
year = {2024},
volume = {116},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a0/}
}
TY - JOUR AU - O. G. Avsyankin AU - S. S. Ashihmin TI - On the compactness of integral operators with homogeneous kernels in local Morrey spaces JO - Matematičeskie zametki PY - 2024 SP - 327 EP - 338 VL - 116 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a0/ LA - ru ID - MZM_2024_116_3_a0 ER -
O. G. Avsyankin; S. S. Ashihmin. On the compactness of integral operators with homogeneous kernels in local Morrey spaces. Matematičeskie zametki, Tome 116 (2024) no. 3, pp. 327-338. http://geodesic.mathdoc.fr/item/MZM_2024_116_3_a0/
[1] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl
[2] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl
[3] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR
[4] T. Kato, “Strong solutions of the Navier-Stokes equation in Morrey spaces”, Bol. Soc. Brasil. Mat. (N.S.), 22:2 (1992), 127–155 | DOI | MR
[5] D. R. Adams, Morrey Spaces, Lect. Notes Appl. Numer. Harmon. Anal., Birkhäuser, Cham, 2015 | MR
[6] V. I. Burenkov, T. V. Tararykova, “Analog neravenstva Yunga dlya svertok funktsii dlya obschikh prostranstv tipa Morri”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Sbornik statei, Trudy MIAN, 293, Nauka, M., 2016, 113–132 | DOI | MR
[7] O. G. Avsyankin, “Kompaktnost nekotorykh klassov operatorov tipa svertki v obobschennykh prostranstvakh Morri”, Matem. zametki, 104:3 (2018), 336–344 | DOI | MR
[8] O. G. Avsyankin, “Ob obratimosti operatorov tipa svertki v prostranstvakh Morri”, Izv. vuzov. Matem., 2019, no. 6, 3–10 | DOI
[9] N. Karapetiants, S. Samko, Equations with Involutive Operators, Birkhäuser, Boston, MA, 2001 | MR
[10] O. G. Avsyankin, “O $C^*$-algebre, porozhdennoi mnogomernymi integralnymi operatorami s odnorodnymi yadrami i operatorami multiplikativnogo sdviga”, Dokl. RAN, 419:6 (2008), 727–728 | MR
[11] O. G. Avsyankin, “O $C^*$-algebre integralnykh operatorov s odnorodnymi yadrami i ostsilliruyuschimi koeffitsientami”, Matem. zametki, 99:3 (2016), 323–332 | DOI | MR
[12] O. G. Avsyankin, “Ob integralnykh operatorakh s odnorodnymi yadrami v vesovykh prostranstvakh Lebega na gruppe Geizenberga”, Matem. zametki, 114:1 (2023), 144–148 | DOI | MR
[13] N. Samko, “Integral operators commuting with dilations and rotations in generalized Morrey-type spaces”, Math. Methods Appl. Sci., 43:16 (2020), 1–19 | DOI | MR
[14] N. A. Bokayev, V. I. Burenkov, D. T. Matin, “On precompactness of a set in general local and global Morrey-type spaces”, Eurasian Math. J., 8:3 (2017), 109–115 | MR