Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter
Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 266-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers $n \times n$ systems of ordinary differential equations of the form $$ y'-By-C(\cdot, \lambda)y=\lambda Ay, \qquad y=y(x), \quad x \in [0, 1], $$ where $A=\operatorname{diag}\{a_1(x), \dots, a_n(x)\}$, $B=\{b_{jk}(x)\}_{j, k=1}^n$, and $C= \{c_{jk}(x, \lambda)\}_{j, k=1}^n$. All functions in these matrices are complex-valued and integrable over $x \in [0, 1]$, and $\|c_{jk}(\cdot, \lambda)\|_{L_1} \to 0$ as $\lambda \to \infty$. The theorems proved in the paper generalize the results of the classical Birkhoff–Tamarkin–Langer theory concerning asymptotic representations of fundamental solutions in sectors and half-strips of the complex plane as $\lambda \to \infty$. The focus is on the minimality of the smoothness requirements on the coefficients.
Keywords: asymptotics of solutions of ordinary differential equations and systems, spectral asymptotics, Birkhoff asymptotics.
@article{MZM_2024_116_2_a8,
     author = {A. P. Kosarev and A. A. Shkalikov},
     title = {Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter},
     journal = {Matemati\v{c}eskie zametki},
     pages = {266--289},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a8/}
}
TY  - JOUR
AU  - A. P. Kosarev
AU  - A. A. Shkalikov
TI  - Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter
JO  - Matematičeskie zametki
PY  - 2024
SP  - 266
EP  - 289
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a8/
LA  - ru
ID  - MZM_2024_116_2_a8
ER  - 
%0 Journal Article
%A A. P. Kosarev
%A A. A. Shkalikov
%T Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter
%J Matematičeskie zametki
%D 2024
%P 266-289
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a8/
%G ru
%F MZM_2024_116_2_a8
A. P. Kosarev; A. A. Shkalikov. Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 266-289. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a8/

[1] J. Horn, “Ueber eine lineare Differentialgleichung zweiter Ordnung mit einem willkürlichen Parameter”, Math. Ann., 52 (1899), 271–292 | DOI | MR

[2] J. Horn, “Ueber lineare Differentialgleichungen mit einem veränderlichen Parameter”, Math. Ann., 52 (1899), 340–362 | DOI | MR

[3] V. A. Steklov, Obschie metody resheniya osnovnykh zadach matematicheskoi fiziki, Dis. $\dots$ dokt. fiz.-matem. nauk, Kharkovskoe matem. ob-vo, Kharkov, 1901

[4] V. A. Steklov, Osnovnye zadachi matematicheskoi fiziki, Ros. gos. akadem. tip., Petrograd, 1922 | MR

[5] L. Schlesinger, “Über asymptotische Darstellungen der Lösungen linearer Differentialsysteme als Funktionen eines Parameters”, Math. Ann., 63 (1907), 277–300 | DOI | MR

[6] Ya. D. Tamarkin, O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii i o razlozhenii proizvolnykh funktsii v ryady, Tip. M. P. Frolovoi, Petrograd, 1917

[7] J. Tamarkin, “Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions”, Math. Z., 27:1 (1928), 1–54 | DOI | MR

[8] G. D. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Trans. Amer. Math. Soc., 9:2 (1908), 219–231 | DOI | MR

[9] G. D. Birkhoff, “Boundary value and expansion problems of ordinary linear differential equations”, Trans. Amer. Math. Soc., 9:4 (1908), 373–395 | DOI | MR

[10] G. D. Birkhoff, R. E. Langer, “The boundary problems and developments associated with a system of ordinary differential equations of the first order”, Proc. Amer. Acad. Arts Sci., 58:2 (1923), 51–128 | DOI

[11] A. A. Shkalikov, “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. seminara im. I. G. Petrovskogo, 9 (1983), 190–229 | MR

[12] I. M. Rapoport, O nekotorykh asimptoticheskikh metodakh v teorii differentsialnykh uravnenii, Izd-vo AN USSR, Kiev, 1954 | MR

[13] M. L. Rasulov, Metod konturnogo integrala i ego primenenie k issledovaniyu zadach dlya differentsialnykh uravnenii, Nauka, M., 1964 | MR

[14] V. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968 | MR

[15] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[16] R. Mennicken, M. Moller, Non-Self-Adjoint Boundary Eigenvalue Problems, North-Holland Math. Stud., 192, North-Holand, Amsterdam, 2003 | MR

[17] V. S. Rykhlov, “Asymptotical formulas for solutions of linear differential systems of the first order”, Results. Math., 36:3–4 (1999), 342–353 | DOI | MR

[18] A. I. Vagabov, “Ob utochnenii asimptoticheskoi teoremy Tamarkina”, Differents. uravneniya, 29:1 (1993), 41–49 | MR

[19] P. Djakov and B.S. Mityagin, “Riesz bases consisting of root functions of 1D Dirac operators”, Proc. Amer. Math Soc., 141:4 (2011), 1361–1375 | DOI | MR

[20] A. M. Savchuk and A. A. Shkalikov, “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR

[21] V. E. Vladykina, A. A. Shkalikov, “Asimptotika reshenii uravneniya Shturma–Liuvillya s singulyarnymi koeffitsientami”, Matem. zametki, 98:6 (2015), 832–841 | DOI | MR

[22] A. M. Savchuk, A. A. Shkalikov, “Asimptoticheskii analiz reshenii obyknovennykh differentsialnykh uravnenii s koeffitsientami-raspredeleniyami”, Matem. sb., 211:11 (2020), 129–166 | DOI | MR

[23] A. P. Kosarev, A. A. Shkalikov, “Spektralnye asimptotiki reshenii $(2\times 2)$-sistemy obyknovennykh differentsialnykh uravnenii pervogo poryadka”, Matem. zametki, 110:6 (2021), 939–943 | DOI

[24] A. P. Kosarev, A. A. Shkalikov, “Asimptotiki po spektralnomu parametru dlya reshenii $(2 \times 2)$-sistem obyknovennykh differentsialnykh uravnenii”, Matem. zametki, 114:4 (2023), 543–562 | DOI | MR

[25] A. A. Shkalikov, “Regulyarnye spektralnye zadachi giperbolicheskogo tipa dlya sistemy obyknovennykh differentsialnykh uravnenii pervogo poryadka”, Matem. zametki, 110:5 (2021), 796–800 | DOI