Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter
Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 266-289

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers $n \times n$ systems of ordinary differential equations of the form $$ y'-By-C(\cdot, \lambda)y=\lambda Ay, \qquad y=y(x), \quad x \in [0, 1], $$ where $A=\operatorname{diag}\{a_1(x), \dots, a_n(x)\}$, $B=\{b_{jk}(x)\}_{j, k=1}^n$, and $C= \{c_{jk}(x, \lambda)\}_{j, k=1}^n$. All functions in these matrices are complex-valued and integrable over $x \in [0, 1]$, and $\|c_{jk}(\cdot, \lambda)\|_{L_1} \to 0$ as $\lambda \to \infty$. The theorems proved in the paper generalize the results of the classical Birkhoff–Tamarkin–Langer theory concerning asymptotic representations of fundamental solutions in sectors and half-strips of the complex plane as $\lambda \to \infty$. The focus is on the minimality of the smoothness requirements on the coefficients.
Keywords: asymptotics of solutions of ordinary differential equations and systems, spectral asymptotics, Birkhoff asymptotics.
@article{MZM_2024_116_2_a8,
     author = {A. P. Kosarev and A. A. Shkalikov},
     title = {Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter},
     journal = {Matemati\v{c}eskie zametki},
     pages = {266--289},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a8/}
}
TY  - JOUR
AU  - A. P. Kosarev
AU  - A. A. Shkalikov
TI  - Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter
JO  - Matematičeskie zametki
PY  - 2024
SP  - 266
EP  - 289
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a8/
LA  - ru
ID  - MZM_2024_116_2_a8
ER  - 
%0 Journal Article
%A A. P. Kosarev
%A A. A. Shkalikov
%T Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter
%J Matematičeskie zametki
%D 2024
%P 266-289
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a8/
%G ru
%F MZM_2024_116_2_a8
A. P. Kosarev; A. A. Shkalikov. Asymptotic representations of solutions of $n\times n$ systems of ordinary differential equations with a large parameter. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 266-289. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a8/