Weakly dissipative linear dynamical systems and a~quadratic Keldysh pencil
Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 195-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Hilbert space, we consider a second-order differential equation with unbounded operator coefficients modeling small motions of a dynamical system with weak energy dissipation. A theorem on the existence and uniqueness of a classical solution is stated. The corresponding spectral problem is reduced to the study of an elliptic quadratic pencil, which, in turn, can be reduced to a “modified” Keldysh pencil. Depending on the asymptotics of the spectrum of the main operator of the problem (the potential energy operator) and the subordination coefficient of the energy dissipation operator, we prove that the corresponding root function system of the linearized problem is a $2$-fold Bari basis, Riesz basis, or Abel–Lidskii basis with parentheses. By way of application, we consider the problem on a quadratic Sturm–Liouville pencil as well as the general spectral problem generated by the problem on small motions of a system of hinged pendulums with cavities completely or partly filled with ideal incompressible fluids and with friction in the hinges.
Keywords: differential operator equation, energy dissipation, operator pencil, discrete spectrum, basis property, asymptotics of eigenvalues.
@article{MZM_2024_116_2_a2,
     author = {V. I. Voytitsky},
     title = {Weakly dissipative linear dynamical systems and a~quadratic {Keldysh} pencil},
     journal = {Matemati\v{c}eskie zametki},
     pages = {195--211},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a2/}
}
TY  - JOUR
AU  - V. I. Voytitsky
TI  - Weakly dissipative linear dynamical systems and a~quadratic Keldysh pencil
JO  - Matematičeskie zametki
PY  - 2024
SP  - 195
EP  - 211
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a2/
LA  - ru
ID  - MZM_2024_116_2_a2
ER  - 
%0 Journal Article
%A V. I. Voytitsky
%T Weakly dissipative linear dynamical systems and a~quadratic Keldysh pencil
%J Matematičeskie zametki
%D 2024
%P 195-211
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a2/
%G ru
%F MZM_2024_116_2_a2
V. I. Voytitsky. Weakly dissipative linear dynamical systems and a~quadratic Keldysh pencil. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 195-211. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a2/

[1] V. I. Voytitsky, “Strong dissipative hydrodynamical systems and the operator pencil of S. Krein”, Lobachevskii J. Math., 42:5 (2021), 1094–1112 | DOI | MR

[2] V. I. Voititskii, “O polnom lineinom differentsialnom uravnenii vtorogo poryadka v gilbertovom prostranstve s glavnym operatorom dissipatsii energii i ogranichennym snizu operatorom potentsialnoi energii”, Dinamicheskie sistemy, 7 (35):3 (2017), 285–294

[3] A. S. Markus, Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, “Shtiintsa”, Kishenev, 1986 | MR

[4] A. A. Shkalikov, “Ellipticheskie uravneniya v gilbertovom prostranstve i spektralnye zadachi, svyazannye s nimi”, Tr. sem. im. I. G. Petrovskogo, 14 (1989), 140–224 | MR

[5] T. Ya. Azizov, N. D. Kopachevskii, Prilozheniya indefinitnoi metriki, “Diaipi”, Simferopol, 2014

[6] N. D. Kopachevskii, Integrodifferentsialnye uravneniya Volterra v gilbertovom prostranstve: spetsialnyi kurs lektsii, FLP Bondarenko O.A., Simferopol, 2012

[7] T. Ya. Azizov, N. D. Kopachevskii, D. A. Zakora, D. O. Tsvetkov, Operatornye metody v prikladnoi matematike, v. 2, IT “Arial”, Simferopol, 2022

[8] Dzh. Goldstein, Polugruppy lineinykh operatorov i ikh prilozheniya, Vyscha shkola, Kiev, 1989 | MR

[9] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[10] N. D. Kopachevskii, Differentsialnye uravneniya v banakhovom prostranstve: spetsialnyi kurs lektsii, FLP Bondarenko O.A., Simferopol, 2012

[11] A. G. Kostyuchenko, A. A. Shkalikov, “Samosopryazhennye kvadratichnye puchki operatorov i ellipticheskie zadachi”, Funkts. analiz i ego pril., 17:2 (1983), 38–61 | MR | Zbl

[12] A. G. Kostyuchenko, A. A. Shkalikov, “Zadachi difraktsii dlya periodicheskoi poverkhnosti dlya uravneniya Gelmgoltsa”, Izbrannye voprosy matematiki i mekhaniki i ikh prilozheniya, Izd-vo MGU, M., 1999, 240–258

[13] A. A. Shkalikov, “Operator pencils arising in elasticity and hydrodynamics: the instability index formula”, Recent Developments in Operator Theory and its Applications (Winnipeg, MB, 1994), Oper. Theory Adv. Appl., 87, Birkhäuser, Basel, 1996, 358–385 | MR

[14] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[15] M. V. Keldysh, “O polnote sobstvennykh funktsii nektoroykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 24:4 (160) (1971), 15–41 | MR

[16] V. I. Voititskii, “O svyazi asimptoticheskikh formul dlya schitayuschei funktsii i dlya kharakteristicheskikh chisel kompaktnogo polozhitelnogo operatora”, Tavricheskii vest. matem. inf., 51:2 (2021), 12–23

[17] N. D. Kopachevskii, Spektralnaya teoriya operatornykh puchkov, OOO “FORMA”, Simferopol, 2009

[18] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[19] M. S. Agranovich, “O summiruemosti ryadov po kornevym vektoram nesamosopryazhennykh ellipticheskikh operatorov”, Funkts. analiz i ego pril., 10:3 (1976), 1–12 | MR | Zbl

[20] M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generilized Method of Eigenoscillations in Difraction Theory, Wiley, Berlin, 1999 | MR

[21] V. B. Lidskii, “O summiruemosti ryadov po glavnym vektoram nesamosopryazhennykh operatorov”, Tr. MMO, 11, GIFML, M., 1962, 3–35 | MR | Zbl

[22] A. A. Shkalikov, “Vozmuscheniya samosopryazhennykh i normalnykh operatorov s diskretnym spektrom”, UMN, 71:5 (431) (2016), 113–174 | DOI | MR | Zbl

[23] A. S. Markus, “O razlozhenii po kornevym vektoram slabo vozmuschennogo samosopryazhennogo operatora”, Dokl. AN SSSR, 142:3 (1962), 538–541 | MR | Zbl

[24] V. E. Katsnelson, “Ob usloviyakh bazisnosti sistemy kornevykh vektorov nekotorykh klassov operatorov”, Funkts. analiz i ego pril., 1:2 (1967), 39–51 | MR | Zbl

[25] A. S. Markus, V. I. Matsaev, “Operatory, porozhdennye polutoralineinymi formami, i ikh spektralnye asimptotiki”, Matematicheskie issledovaniya, Shtiintsa, Kishinev, 1981, 86–103

[26] A. G. Kostyuchenko, G. V. Radzievskii, “O summirovanii metodom Abelya $n$-kratnykh razlozhenii”, Sib. matem. zhurn., XV:4 (1974), 855–870 | MR

[27] G. Sh. Guseinov, “K spektralnomu analizu kvadratichnogo puchka operatorov Shturma–Liuvillya”, Dokl. AN SSSR, 285:6 (1985), 1292–1296 | MR | Zbl

[28] D. Borisov, P. Freitas, “Eigenvalue asymptotics, inverse problems and a trace formula for the linear damped wave equation”, J. Differential Equations, 247:1 (2009), 3028–3039 | DOI | MR

[29] I. M. Nabiev, “Kratnost i vzaimnoe raspolozhenie sobstvennykh znachenii kvadratichnogo puchka operatorov Shturma–Liuvillya”, Matem. zametki, 67:3 (2000), 369–381 | DOI | MR | Zbl

[30] M. A. Naimark, Linear Differential Operators. Part I: Elementary Theory of Linear Differential Operators, Frederick Ungar, New York, 1967 | MR

[31] A. A. Shkalikov, “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. sem. im. I. G. Petrovskogo, 9 (1983), 190–229 | MR

[32] N. D. Kopachevskii, V. I. Voititskii, Z. Z. Sitshaeva, “O kolebaniyakh dvukh sochlenennykh mayatnikov, soderzhaschikh polosti, chastichno zapolnennye neszhimaemoi zhidkostyu”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 63, RUDN, M., 2017, 627–677 | DOI

[33] N. D. Kopachevsky, V. I. Voytitsky, Z. Z. Sitshaeva, “On two hydromechanical problems inspired by works of S. Krein”, Differential Equations, Mathematical Physics, and Applications: Selim Grigorievich Krein Centennial, Contemp. Math., 734, Amer. Math. Soc., Providence, RI, 2019, 219–238 | MR

[34] N. D. Kopachevskii, V. I. Voititskii, “O kolebaniyakh sochlenennykh mayatnikov s polostyami, zapolnennymi odnorodnymi zhidkostyami”, Tr. Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 65, RUDN, M., 2019, 434–512

[35] N. D. Kopachevskii, V. I. Voititskii, “O malykh kolebaniyakh trekh sochlenennykh mayatnikov s polostyami, zapolnennymi odnorodnymi idealnymi zhidkostyami”, Sib. elektron. matem. izv., 17 (2020), 260–299 | DOI

[36] V. I. Voititskii, N. D. Kopachevskii, “O normalnykh kolebaniyakh mayatnika s polostyu, chastichno zapolnennoi idealnoi neszhimaemoi zhidkostyu”, Materialy Voronezhskoi vesennei matematicheskoi shkoly, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 190, VINITI RAN, M., 2021, 34–49 | DOI

[37] M. Sh. Birman, M. Z. Solomyak, “Asimptotika spektra differentsialnykh uravnenii”, Itogi nauki i tekhn. Ser. Mat. anal., 14, VINITI, M., 1977, 5–58 | MR | Zbl