Any Chebyshev curve without self-intersections is monotone
Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 321-323.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Banach space, Chebyshev set, monotone curve.
@article{MZM_2024_116_2_a12,
     author = {P. A. Borodin and E. A. Savinova},
     title = {Any {Chebyshev} curve without self-intersections is monotone},
     journal = {Matemati\v{c}eskie zametki},
     pages = {321--323},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a12/}
}
TY  - JOUR
AU  - P. A. Borodin
AU  - E. A. Savinova
TI  - Any Chebyshev curve without self-intersections is monotone
JO  - Matematičeskie zametki
PY  - 2024
SP  - 321
EP  - 323
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a12/
LA  - ru
ID  - MZM_2024_116_2_a12
ER  - 
%0 Journal Article
%A P. A. Borodin
%A E. A. Savinova
%T Any Chebyshev curve without self-intersections is monotone
%J Matematičeskie zametki
%D 2024
%P 321-323
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a12/
%G ru
%F MZM_2024_116_2_a12
P. A. Borodin; E. A. Savinova. Any Chebyshev curve without self-intersections is monotone. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 321-323. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a12/

[1] A. R. Alimov, Izv. RAN. Ser. matem., 69:4 (2005), 3–18 | DOI | MR | Zbl

[2] A. R. Alimov, I. G. Tsarkov, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl

[3] I. G. Tsarkov, Izv. RAN. Ser. matem., 85:2 (2021), 142–171 | DOI

[4] A. R. Alimov, Lobachevskii J. Math., 43:3 (2022), 519–527 | DOI | MR

[5] B. Brosowski, F. Deutsch, J. Lambert, P. D. Morris, Math. Ann., 212:2 (1974), 89–101 | DOI | MR

[6] V. S. Balaganskii, L. P. Vlasov, UMN, 51:6 (312) (1996), 125–188 | DOI | MR | Zbl

[7] L. Hetzelt, Acta Math. Hungar., 45:1–2 (1985), 53–68 | DOI | MR

[8] A. R. Alimov, B. B. Bednov, Matem. sb., 212:5 (2021), 37–57 | DOI | MR

[9] A. R. Alimov, Izv. RAN. Ser. matem., 78:4 (2014), 3–18 | DOI | MR | Zbl

[10] Ch. B. Dunham, Canad. Math. Bull., 18:1 (1975), 35–37 | DOI | MR