Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2024_116_2_a12, author = {P. A. Borodin and E. A. Savinova}, title = {Any {Chebyshev} curve without self-intersections is monotone}, journal = {Matemati\v{c}eskie zametki}, pages = {321--323}, publisher = {mathdoc}, volume = {116}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a12/} }
P. A. Borodin; E. A. Savinova. Any Chebyshev curve without self-intersections is monotone. Matematičeskie zametki, Tome 116 (2024) no. 2, pp. 321-323. http://geodesic.mathdoc.fr/item/MZM_2024_116_2_a12/
[1] A. R. Alimov, Izv. RAN. Ser. matem., 69:4 (2005), 3–18 | DOI | MR | Zbl
[2] A. R. Alimov, I. G. Tsarkov, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl
[3] I. G. Tsarkov, Izv. RAN. Ser. matem., 85:2 (2021), 142–171 | DOI
[4] A. R. Alimov, Lobachevskii J. Math., 43:3 (2022), 519–527 | DOI | MR
[5] B. Brosowski, F. Deutsch, J. Lambert, P. D. Morris, Math. Ann., 212:2 (1974), 89–101 | DOI | MR
[6] V. S. Balaganskii, L. P. Vlasov, UMN, 51:6 (312) (1996), 125–188 | DOI | MR | Zbl
[7] L. Hetzelt, Acta Math. Hungar., 45:1–2 (1985), 53–68 | DOI | MR
[8] A. R. Alimov, B. B. Bednov, Matem. sb., 212:5 (2021), 37–57 | DOI | MR
[9] A. R. Alimov, Izv. RAN. Ser. matem., 78:4 (2014), 3–18 | DOI | MR | Zbl
[10] Ch. B. Dunham, Canad. Math. Bull., 18:1 (1975), 35–37 | DOI | MR