Semi-regular solutions of integral equations with discontinuous nonlinearities
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 109-121

Voir la notice de l'article provenant de la source Math-Net.Ru

We study integral equations with discontinuous nonlinearities in Lebesgue spaces. Using the variational method, based on the concept of a quasipotential operator, we establish a theorem on the existence of semi-regular solutions. For equations with a parameter, a theorem on the existence of nontrivial semi-regular solutions for sufficiently large parameter values is obtained. An example of an applied problem for which the conditions of these theorems are satisfied is given.
Keywords: integral equation, discontinuous nonlinearity, parameter, semi-regular solution, variational method.
@article{MZM_2024_116_1_a7,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {Semi-regular solutions of integral equations with discontinuous nonlinearities},
     journal = {Matemati\v{c}eskie zametki},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a7/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - Semi-regular solutions of integral equations with discontinuous nonlinearities
JO  - Matematičeskie zametki
PY  - 2024
SP  - 109
EP  - 121
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a7/
LA  - ru
ID  - MZM_2024_116_1_a7
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T Semi-regular solutions of integral equations with discontinuous nonlinearities
%J Matematičeskie zametki
%D 2024
%P 109-121
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a7/
%G ru
%F MZM_2024_116_1_a7
V. N. Pavlenko; D. K. Potapov. Semi-regular solutions of integral equations with discontinuous nonlinearities. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 109-121. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a7/