Semi-regular solutions of integral equations with discontinuous nonlinearities
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 109-121
Voir la notice de l'article provenant de la source Math-Net.Ru
We study integral equations with discontinuous nonlinearities in Lebesgue spaces.
Using the variational method, based on the concept of a quasipotential
operator, we establish a theorem on the existence of semi-regular solutions.
For equations with a parameter, a theorem on the existence of nontrivial
semi-regular solutions for sufficiently large parameter values is obtained.
An example of an applied problem for which the conditions of these theorems are satisfied is given.
Keywords:
integral equation, discontinuous nonlinearity, parameter, semi-regular
solution, variational method.
@article{MZM_2024_116_1_a7,
author = {V. N. Pavlenko and D. K. Potapov},
title = {Semi-regular solutions of integral equations with discontinuous nonlinearities},
journal = {Matemati\v{c}eskie zametki},
pages = {109--121},
publisher = {mathdoc},
volume = {116},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a7/}
}
TY - JOUR AU - V. N. Pavlenko AU - D. K. Potapov TI - Semi-regular solutions of integral equations with discontinuous nonlinearities JO - Matematičeskie zametki PY - 2024 SP - 109 EP - 121 VL - 116 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a7/ LA - ru ID - MZM_2024_116_1_a7 ER -
V. N. Pavlenko; D. K. Potapov. Semi-regular solutions of integral equations with discontinuous nonlinearities. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 109-121. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a7/