On the Hadamard and Vandermonde determinants and the Bernoulli--Euler--Lagrange--Aitken method
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 91-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article develops an Euler–Lagrange method for calculating all the roots of an arbitrary polynomial $P(z)$ with complex coefficients. The method is based on calculating the limits of ratios of determinants (as in the Bernoulli–Aitken methods) constructed from the coefficients of the Taylor and Laurent series expansions of the function $P'(z)/P(z)$.
Keywords: root of polynomial, Taylor series, Vandermonde determinant.
Mots-clés : Laurent series, Hadamard determinant
@article{MZM_2024_116_1_a6,
     author = {A. V. Lebedev and Yu. V. Trubnikov and M. M. Chernyavsky},
     title = {On the {Hadamard} and {Vandermonde} determinants and the {Bernoulli--Euler--Lagrange--Aitken} method},
     journal = {Matemati\v{c}eskie zametki},
     pages = {91--108},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a6/}
}
TY  - JOUR
AU  - A. V. Lebedev
AU  - Yu. V. Trubnikov
AU  - M. M. Chernyavsky
TI  - On the Hadamard and Vandermonde determinants and the Bernoulli--Euler--Lagrange--Aitken method
JO  - Matematičeskie zametki
PY  - 2024
SP  - 91
EP  - 108
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a6/
LA  - ru
ID  - MZM_2024_116_1_a6
ER  - 
%0 Journal Article
%A A. V. Lebedev
%A Yu. V. Trubnikov
%A M. M. Chernyavsky
%T On the Hadamard and Vandermonde determinants and the Bernoulli--Euler--Lagrange--Aitken method
%J Matematičeskie zametki
%D 2024
%P 91-108
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a6/
%G ru
%F MZM_2024_116_1_a6
A. V. Lebedev; Yu. V. Trubnikov; M. M. Chernyavsky. On the Hadamard and Vandermonde determinants and the Bernoulli--Euler--Lagrange--Aitken method. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 91-108. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a6/

[1] D. Bernulli, “Observationes de serbus recurrentibus”, Comment. acad. sc. Petrop., 3 (1732 (1728)), 85–100

[2] J. M. Mc Namee, V. Y. Pan, Numerical Methods for Roots of Polynomials. Part II, Stud. Comput. Math., 16, Academic Press, Boston, 2013 | MR

[3] L. Eiler, Vvedenie v analiz beskonechnykh, v. 1, GIFML, M., 1961 | MR

[4] J. L. Lagrange, “(1798) Sur la Méthode d'Approximation tirée des séries récurrentes // Traité de la résolution des équations numériques de tous les degrés”, J. L. Lagrange – Paris, 6, 1826, 130–137

[5] A. C. Aitken, “On Bernulli's numerical solution of algebraic equations”, Proc. Royal Soc. Edinburgh, 46 (1927), 289–305 | DOI

[6] Yu. V. Trubnikov, M. M. Chernyavskii, “Raskhodyaschiesya stepennye ryady i formuly priblizhennogo analiticheskogo nakhozhdeniya reshenii algebraicheskikh uravnenii”, Vest. Vit. un-ta, 101:4 (2018), 5–17

[7] Yu. V. Trubnikov, M. M. Chernyavskii, “Modifikatsiya formul Eitkena i algoritmy analiticheskogo nakhozhdeniya kratnykh kornei polinomov”, Vest. Vit. un-ta, 110:1 (2021), 13–25

[8] A. V. Lebedev, Yu. V. Trubnikov, M. M. Chernyavskii, “O metode Bernulli–Eilera–Lagranzha–Eitkena vychisleniya kornei polinomov”, Dokl. NAN Belarusi, 67:5 (2023), 359–365 | MR