Jackson-type theorem on approximation by algebraic
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 34-44

Voir la notice de l'article provenant de la source Math-Net.Ru

I. I. Sharapudinov, when studying the approximation properties of partial sums of a special series in Laguerre polynomials, introduced a weighted best approximation characteristic $E_n(f,u_r)$ that depends on a parameter $r$. In the present paper, we prove a Jackson-type theorem for this characteristic for $r=1$.
Mots-clés : Laguerre polynomial
Keywords: special series, Vallée-Poussin mean, Sobolev-type inner product.
@article{MZM_2024_116_1_a2,
     author = {R. M. Gadzhimirzaev},
     title = {Jackson-type theorem on approximation by algebraic},
     journal = {Matemati\v{c}eskie zametki},
     pages = {34--44},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a2/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - Jackson-type theorem on approximation by algebraic
JO  - Matematičeskie zametki
PY  - 2024
SP  - 34
EP  - 44
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a2/
LA  - ru
ID  - MZM_2024_116_1_a2
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T Jackson-type theorem on approximation by algebraic
%J Matematičeskie zametki
%D 2024
%P 34-44
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a2/
%G ru
%F MZM_2024_116_1_a2
R. M. Gadzhimirzaev. Jackson-type theorem on approximation by algebraic. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 34-44. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a2/