On the existence of weak solutions of the Kelvin--Voigt model
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 152-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Kelvin–Voigt model, Caputo derivative, weak solution, existence theorem, regular Lagrangian flow.
@article{MZM_2024_116_1_a10,
     author = {A. V. Zvyagin},
     title = {On the existence of weak solutions of the {Kelvin--Voigt} model},
     journal = {Matemati\v{c}eskie zametki},
     pages = {152--157},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a10/}
}
TY  - JOUR
AU  - A. V. Zvyagin
TI  - On the existence of weak solutions of the Kelvin--Voigt model
JO  - Matematičeskie zametki
PY  - 2024
SP  - 152
EP  - 157
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a10/
LA  - ru
ID  - MZM_2024_116_1_a10
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%T On the existence of weak solutions of the Kelvin--Voigt model
%J Matematičeskie zametki
%D 2024
%P 152-157
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a10/
%G ru
%F MZM_2024_116_1_a10
A. V. Zvyagin. On the existence of weak solutions of the Kelvin--Voigt model. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 152-157. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a10/

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR

[2] Ya. I. Voitkunskii, V. B. Amfilokhiev, V. A. Pavlovskii, Tr. Leningradsk. ord. Lenina korablestroit. in-ta, 69 (1970), 19–26

[3] V. A. Pavlovskii, Dokl. AN SSSR, 200:4 (1971), 809–812

[4] V. V. Pukhnachev, O. A. Frolovskaya, Sovremennye problemy i metody mekhaniki, Trudy MIAN, 300, Nauka, M., 2018, 176–189 | DOI | MR

[5] F. Mainardi, G. Spada, Eur. Phys. J. Special Topics, 193 (2011), 133–160 | DOI

[6] G. W. Scott Blair, A Survey of General and Applied Rheology, Sir Isaac Pitman and Sons, London, 1949

[7] E. N. Ogorodnikov, V. P. Radchenko, N. S. Yashagin, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 255–268 | DOI

[8] Dzh. Astarita, Dzh. Maruchchi, Osnovy gidrodinamiki nenyutonovskikh zhidkostei, Mir, M., 1979

[9] V. P. Orlov, P. E. Sobolevskii, Differential Integral Equations, 4:1 (1991), 103–115 | MR

[10] V. G. Zvyagin, V. T. Dmitrienko, Differents. uravneniya, 38:12 (2002), 1633–1645 | MR

[11] J. G. Oldroyd, Proc. Roy. Soc. London Ser. A, 200:1063 (1950), 523–541 | DOI | MR

[12] A. V. Zvyagin, UMN, 74:3 (447) (2019), 189–190 | DOI | MR | Zbl

[13] A. V. Zvyagin, Izv. RAN. Ser. matem., 85:1 (2021), 66–97 | DOI | MR

[14] A. V. Zvyagin, E. I. Kostenko, Mathematics, 11 (2023), 4472 | DOI

[15] A. V. Zvyagin, E. I. Kostenko, Differents. uravneniya, 59:12 (2023), 1710–1714 | DOI | MR

[16] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999 | MR

[17] V. G. Zvyagin, M. V. Turbin, Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND URSS, M., 2012

[18] R. J. DiPerna, P. L. Lions, Invent. Math., 98:3 (1989), 511–547 | DOI | MR

[19] G. Crippa, C. de Lellis, J. Reine Angew. Math., 616 (2008), 15–46 | MR

[20] G. Crippa, Boll. Unione Mat. Ital., 1:2 (2008), 333–348 | MR

[21] V. G. Zvyagin, SMFN, 46 (2012), 92–119

[22] B. N. Sadovskii, UMN, 27:1 (163) (1972), 81–146 | MR | Zbl

[23] V. T. Dmitrienko, V. G. Zvyagin, Matem. zametki, 31:5 (1982), 801–812 | MR | Zbl