On the existence of weak solutions of the Kelvin--Voigt model
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 152-157

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Kelvin–Voigt model, Caputo derivative, weak solution, existence theorem, regular Lagrangian flow.
@article{MZM_2024_116_1_a10,
     author = {A. V. Zvyagin},
     title = {On the existence of weak solutions of the {Kelvin--Voigt} model},
     journal = {Matemati\v{c}eskie zametki},
     pages = {152--157},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a10/}
}
TY  - JOUR
AU  - A. V. Zvyagin
TI  - On the existence of weak solutions of the Kelvin--Voigt model
JO  - Matematičeskie zametki
PY  - 2024
SP  - 152
EP  - 157
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a10/
LA  - ru
ID  - MZM_2024_116_1_a10
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%T On the existence of weak solutions of the Kelvin--Voigt model
%J Matematičeskie zametki
%D 2024
%P 152-157
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a10/
%G ru
%F MZM_2024_116_1_a10
A. V. Zvyagin. On the existence of weak solutions of the Kelvin--Voigt model. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 152-157. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a10/