Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2024_116_1_a0, author = {G. E. Abduragimov}, title = {On the existence of a positive solution of a boundary value problem for a nonlinear second-order functional-differential equation with integral boundary conditions}, journal = {Matemati\v{c}eskie zametki}, pages = {3--9}, publisher = {mathdoc}, volume = {116}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a0/} }
TY - JOUR AU - G. E. Abduragimov TI - On the existence of a positive solution of a boundary value problem for a nonlinear second-order functional-differential equation with integral boundary conditions JO - Matematičeskie zametki PY - 2024 SP - 3 EP - 9 VL - 116 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a0/ LA - ru ID - MZM_2024_116_1_a0 ER -
%0 Journal Article %A G. E. Abduragimov %T On the existence of a positive solution of a boundary value problem for a nonlinear second-order functional-differential equation with integral boundary conditions %J Matematičeskie zametki %D 2024 %P 3-9 %V 116 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a0/ %G ru %F MZM_2024_116_1_a0
G. E. Abduragimov. On the existence of a positive solution of a boundary value problem for a nonlinear second-order functional-differential equation with integral boundary conditions. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a0/
[1] A. Cabada, J. Iglesias, “Nonlinear differential equations with perturbed Dirichlet integral boundary conditions”, Bound. Value Probl., 6 (2021), 1–19 | MR
[2] M. Benchohra, S. Hamani, J. J. Nieto, “The method of upper and lower solutions for second order differential inclusions with integral boundary conditions”, Rocky Mountain J. Math., 40:1 (2010), 13–26 | DOI | MR
[3] J. R. L. Webb, “Positive solutions of some higher order nonlocal boundary value problems”, Electron. J. Qual. Theory Differ. Equ., Special Edition I, 29 (2009), 1–15 | DOI | MR
[4] B. Ahmad, J. J. Nieto, “Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions”, Bound. Value Probl., 2009 (2009), 1–11 | MR
[5] A. Belarbi, M. Benchohra, A. Quahab, “Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions”, Arch. Math. (Brno), 44:1 (2008), 1–7 | MR
[6] J. R. L. Webb, “A unified approach to nonlocal boundary value problems”, Dynamic systems and applications. Vol. 5, Dynamic Publishers, Atlanta, GA, 2008, 510–515 | MR
[7] G. Infante, “Nonlocal boundary value problems with two nonlinear boundary conditions”, Commun. Appl. Anal., 12:3 (2008), 279–288 | MR
[8] J. R. L. Webb, G. Infante, “Positive solutions of nonlocal boundary value problems: a unified approach”, J. London Math. Soc. (2), 74:3 (2006), 673–693 | DOI | MR
[9] A. Belarbi, M. Benchohra, “Existence results for nonlinear boundary-value problems with integral boundary conditions”, Electron. J. Differential Equations, 2005:6 (2005), 1–10 | MR
[10] G. E. Abduragimov, “O suschestvovanii polozhitelnogo resheniya kraevoi zadachi dlya odnogo nelineinogo obyknovennogo differentsialnogo uravneniya vtorogo poryadka”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly “Sovremennye problemy teorii funktsii i ikh prilozheniya”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 199, VINITI RAN, M., 2021, 3–6 | DOI
[11] G. E. Abduragimov, “O suschestvovanii polozhitelnogo resheniya kraevoi zadachi dlya odnogo nelineinogo differentsialnogo uravneniya vtorogo poryadka s integralnymi granichnymi usloviyami”, Matematicheskaya fizika i kompyuternoe modelirovanie, 25:4 (2022), 4–14 | MR
[12] M. A. Krasnoselskii, P. P. Zabreiko, Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR
[13] W.-X. Zhou, J.-G. Zhang, J.-M. Li, “Existence of multiple positive solutions for singular boundary value problems of nonlinear fractional differential equations”, Adv. Difference Equ., 97 (2014), 1–16 | MR