On the existence of a positive solution of a boundary value problem for a nonlinear second-order functional-differential equation with integral boundary conditions
Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem for a nonlinear second-order functional-differential equation on the interval $[0,1]$ with integral boundary conditions is considered. Sufficient conditions for the existence of at least one positive solution of the problem under consideration are found by using special topological tools. A nontrivial example in which the sufficient conditions for the unique solvability of the problem are satisfied is given.
Keywords: functional-differential equation, boundary value problem, cone, Green function.
Mots-clés : positive solution
@article{MZM_2024_116_1_a0,
     author = {G. E. Abduragimov},
     title = {On the existence of a positive solution of a boundary value problem for a nonlinear second-order functional-differential equation with integral boundary conditions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a0/}
}
TY  - JOUR
AU  - G. E. Abduragimov
TI  - On the existence of a positive solution of a boundary value problem for a nonlinear second-order functional-differential equation with integral boundary conditions
JO  - Matematičeskie zametki
PY  - 2024
SP  - 3
EP  - 9
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a0/
LA  - ru
ID  - MZM_2024_116_1_a0
ER  - 
%0 Journal Article
%A G. E. Abduragimov
%T On the existence of a positive solution of a boundary value problem for a nonlinear second-order functional-differential equation with integral boundary conditions
%J Matematičeskie zametki
%D 2024
%P 3-9
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a0/
%G ru
%F MZM_2024_116_1_a0
G. E. Abduragimov. On the existence of a positive solution of a boundary value problem for a nonlinear second-order functional-differential equation with integral boundary conditions. Matematičeskie zametki, Tome 116 (2024) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/MZM_2024_116_1_a0/

[1] A. Cabada, J. Iglesias, “Nonlinear differential equations with perturbed Dirichlet integral boundary conditions”, Bound. Value Probl., 6 (2021), 1–19 | MR

[2] M. Benchohra, S. Hamani, J. J. Nieto, “The method of upper and lower solutions for second order differential inclusions with integral boundary conditions”, Rocky Mountain J. Math., 40:1 (2010), 13–26 | DOI | MR

[3] J. R. L. Webb, “Positive solutions of some higher order nonlocal boundary value problems”, Electron. J. Qual. Theory Differ. Equ., Special Edition I, 29 (2009), 1–15 | DOI | MR

[4] B. Ahmad, J. J. Nieto, “Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions”, Bound. Value Probl., 2009 (2009), 1–11 | MR

[5] A. Belarbi, M. Benchohra, A. Quahab, “Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions”, Arch. Math. (Brno), 44:1 (2008), 1–7 | MR

[6] J. R. L. Webb, “A unified approach to nonlocal boundary value problems”, Dynamic systems and applications. Vol. 5, Dynamic Publishers, Atlanta, GA, 2008, 510–515 | MR

[7] G. Infante, “Nonlocal boundary value problems with two nonlinear boundary conditions”, Commun. Appl. Anal., 12:3 (2008), 279–288 | MR

[8] J. R. L. Webb, G. Infante, “Positive solutions of nonlocal boundary value problems: a unified approach”, J. London Math. Soc. (2), 74:3 (2006), 673–693 | DOI | MR

[9] A. Belarbi, M. Benchohra, “Existence results for nonlinear boundary-value problems with integral boundary conditions”, Electron. J. Differential Equations, 2005:6 (2005), 1–10 | MR

[10] G. E. Abduragimov, “O suschestvovanii polozhitelnogo resheniya kraevoi zadachi dlya odnogo nelineinogo obyknovennogo differentsialnogo uravneniya vtorogo poryadka”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly “Sovremennye problemy teorii funktsii i ikh prilozheniya”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 199, VINITI RAN, M., 2021, 3–6 | DOI

[11] G. E. Abduragimov, “O suschestvovanii polozhitelnogo resheniya kraevoi zadachi dlya odnogo nelineinogo differentsialnogo uravneniya vtorogo poryadka s integralnymi granichnymi usloviyami”, Matematicheskaya fizika i kompyuternoe modelirovanie, 25:4 (2022), 4–14 | MR

[12] M. A. Krasnoselskii, P. P. Zabreiko, Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR

[13] W.-X. Zhou, J.-G. Zhang, J.-M. Li, “Existence of multiple positive solutions for singular boundary value problems of nonlinear fractional differential equations”, Adv. Difference Equ., 97 (2014), 1–16 | MR