Quasi-Energy Function for Morse–Smale 3-Diffeomorphisms with Fixed Points with Pairwise Different Indices
Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 597-609 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper is devoted to a lower bound for the number of critical points of the Lyapunov function for Morse–Smale 3-diffeomorphisms with fixed points with pairwise distinct indices. It is known that, in the presence of a single noncompact heteroclinic curve, the supporting manifold of the diffeomorphisms under consideration is a 3-sphere, and the class of topological conjugacy of such a diffeomorphism $f$ is completely determined by the equivalence class (there exist infinitely many of them) of the Hopf knot $L_{f}$, which is a knot in the generating class of the fundamental group of the manifold $\mathbb S^2\times \mathbb S^1$. Moreover, any Hopf knot is realized by some diffeomorphism of the class under consideration. It is known that the diffeomorphisms defined by the standard Hopf knot $L_0=\{s\}\times \mathbb S^1$ have an energy function, which is a Lyapunovfunction whose set of critical points coincides with the chain recurrent set. However, the set of critical points of any Lyapunov function of a diffeomorphism $f$ with a nonstandard Hopf knot is strictly greater than the chain recurrent set of the diffeomorphism. In the present paper, for the diffeomorphisms defined by generalized Mazur knots, a quasi-energy function has been constructed, which is a Lyapunov function with a minimum number of critical points.
Keywords: Morse–Smale diffeomorphism, Hopf knot.
@article{MZM_2024_115_4_a9,
     author = {O. V. Pochinka and E. A. Talanova},
     title = {Quasi-Energy {Function} for {Morse{\textendash}Smale} {3-Diffeomorphisms} with {Fixed} {Points} with {Pairwise} {Different} {Indices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {597--609},
     year = {2024},
     volume = {115},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a9/}
}
TY  - JOUR
AU  - O. V. Pochinka
AU  - E. A. Talanova
TI  - Quasi-Energy Function for Morse–Smale 3-Diffeomorphisms with Fixed Points with Pairwise Different Indices
JO  - Matematičeskie zametki
PY  - 2024
SP  - 597
EP  - 609
VL  - 115
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a9/
LA  - ru
ID  - MZM_2024_115_4_a9
ER  - 
%0 Journal Article
%A O. V. Pochinka
%A E. A. Talanova
%T Quasi-Energy Function for Morse–Smale 3-Diffeomorphisms with Fixed Points with Pairwise Different Indices
%J Matematičeskie zametki
%D 2024
%P 597-609
%V 115
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a9/
%G ru
%F MZM_2024_115_4_a9
O. V. Pochinka; E. A. Talanova. Quasi-Energy Function for Morse–Smale 3-Diffeomorphisms with Fixed Points with Pairwise Different Indices. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 597-609. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a9/

[1] Ch. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in Math., 38, Amer. Math. Soc., Providence, RI, 1978 | MR

[2] K. R. Meyer, “Energy functions for Morse–Smale systems”, Amer. J. Math., 90 (1968), 1031–1040 | DOI | MR

[3] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR

[4] V. Z. Grines, F. Laudenbakh, O. V. Pochinka, “Energeticheskaya funktsiya dlya gradientnopodobnykh diffeomorfizmov na 3-mnogoobraziyakh”, Dokl. AN, 422:3 (2008), 299–301 | DOI | MR

[5] V. Z. Grines, F. Laudenbakh, O. V. Pochinka, “Kvazi-energeticheskaya funktsiya dlya diffeomorfizmov s dikimi separatrisami”, Matem. zametki, 86:2 (2009), 175–183 | DOI | MR | Zbl

[6] V. Grines, T. Medvedev, O. Pochinka, Dynamical Systems on 2- and 3-Manifolds, Dev. Math., 46, Springer, Cham, 2016 | DOI | MR

[7] O. V. Pochinka, E. A. Talanova, D. D. Shubin, “Uzel kak polnyi invariant 3-diffeomorfizmov Morsa–Smeila s chetyrmya nepodvizhnymi tochkami”, Matem. sb., 214:8 (2023), 94–107 | DOI | MR

[8] P. Kirk, Ch. Livingston, “Knot invariants in 3-manifolds and essential tori”, Pacific J. Math., 197:1 (2001), 73–96 | DOI | MR

[9] B. Mazur, “A note on some contractible 4-manifolds”, Ann. of Math. (2), 73 (1961), 221–228 | DOI | MR

[10] T. Medvedev, O. Pochinka, A quasi-energy function for Pixton diffeomorphisms defined by generalized Mazur knots, 2023, arXiv: 2301.02405

[11] P. M. Akhmetiev, T. V. Medvedev, O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 1–15 | MR

[12] A. Fomenko, Differentsialnaya geometriya i topologiya, Izd-vo Mosk. un-ta, M., 1983 | MR

[13] J. Milnor, Morse Theory, Ann. of Math. Stud., 51, Princeton Univ. Press, Princeton, NJ, 2016 | MR