@article{MZM_2024_115_4_a9,
author = {O. V. Pochinka and E. A. Talanova},
title = {Quasi-Energy {Function} for {Morse{\textendash}Smale} {3-Diffeomorphisms} with {Fixed} {Points} with {Pairwise} {Different} {Indices}},
journal = {Matemati\v{c}eskie zametki},
pages = {597--609},
year = {2024},
volume = {115},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a9/}
}
TY - JOUR AU - O. V. Pochinka AU - E. A. Talanova TI - Quasi-Energy Function for Morse–Smale 3-Diffeomorphisms with Fixed Points with Pairwise Different Indices JO - Matematičeskie zametki PY - 2024 SP - 597 EP - 609 VL - 115 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a9/ LA - ru ID - MZM_2024_115_4_a9 ER -
%0 Journal Article %A O. V. Pochinka %A E. A. Talanova %T Quasi-Energy Function for Morse–Smale 3-Diffeomorphisms with Fixed Points with Pairwise Different Indices %J Matematičeskie zametki %D 2024 %P 597-609 %V 115 %N 4 %U http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a9/ %G ru %F MZM_2024_115_4_a9
O. V. Pochinka; E. A. Talanova. Quasi-Energy Function for Morse–Smale 3-Diffeomorphisms with Fixed Points with Pairwise Different Indices. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 597-609. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a9/
[1] Ch. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in Math., 38, Amer. Math. Soc., Providence, RI, 1978 | MR
[2] K. R. Meyer, “Energy functions for Morse–Smale systems”, Amer. J. Math., 90 (1968), 1031–1040 | DOI | MR
[3] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR
[4] V. Z. Grines, F. Laudenbakh, O. V. Pochinka, “Energeticheskaya funktsiya dlya gradientnopodobnykh diffeomorfizmov na 3-mnogoobraziyakh”, Dokl. AN, 422:3 (2008), 299–301 | DOI | MR
[5] V. Z. Grines, F. Laudenbakh, O. V. Pochinka, “Kvazi-energeticheskaya funktsiya dlya diffeomorfizmov s dikimi separatrisami”, Matem. zametki, 86:2 (2009), 175–183 | DOI | MR | Zbl
[6] V. Grines, T. Medvedev, O. Pochinka, Dynamical Systems on 2- and 3-Manifolds, Dev. Math., 46, Springer, Cham, 2016 | DOI | MR
[7] O. V. Pochinka, E. A. Talanova, D. D. Shubin, “Uzel kak polnyi invariant 3-diffeomorfizmov Morsa–Smeila s chetyrmya nepodvizhnymi tochkami”, Matem. sb., 214:8 (2023), 94–107 | DOI | MR
[8] P. Kirk, Ch. Livingston, “Knot invariants in 3-manifolds and essential tori”, Pacific J. Math., 197:1 (2001), 73–96 | DOI | MR
[9] B. Mazur, “A note on some contractible 4-manifolds”, Ann. of Math. (2), 73 (1961), 221–228 | DOI | MR
[10] T. Medvedev, O. Pochinka, A quasi-energy function for Pixton diffeomorphisms defined by generalized Mazur knots, 2023, arXiv: 2301.02405
[11] P. M. Akhmetiev, T. V. Medvedev, O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 1–15 | MR
[12] A. Fomenko, Differentsialnaya geometriya i topologiya, Izd-vo Mosk. un-ta, M., 1983 | MR
[13] J. Milnor, Morse Theory, Ann. of Math. Stud., 51, Princeton Univ. Press, Princeton, NJ, 2016 | MR