Large Gaps between Sums of Two Squareful Numbers
Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 589-596 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $M(x)$ be the length of the largest subinterval of $[1,x]$ which does not contain any sums of two squareful numbers. We prove a lower bound $$ M(x)\gg \frac{\ln x}{(\ln\ln x)^2} $$ for all $x\geqslant 3$. The proof relies on properties of random subsets of the prime numbers.
Keywords: squareful numbers, large gaps, values of quadratic forms.
@article{MZM_2024_115_4_a8,
     author = {A. B. Kalmynin and S. V. Konyagin},
     title = {Large {Gaps} between {Sums} of {Two} {Squareful} {Numbers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {589--596},
     year = {2024},
     volume = {115},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a8/}
}
TY  - JOUR
AU  - A. B. Kalmynin
AU  - S. V. Konyagin
TI  - Large Gaps between Sums of Two Squareful Numbers
JO  - Matematičeskie zametki
PY  - 2024
SP  - 589
EP  - 596
VL  - 115
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a8/
LA  - ru
ID  - MZM_2024_115_4_a8
ER  - 
%0 Journal Article
%A A. B. Kalmynin
%A S. V. Konyagin
%T Large Gaps between Sums of Two Squareful Numbers
%J Matematičeskie zametki
%D 2024
%P 589-596
%V 115
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a8/
%G ru
%F MZM_2024_115_4_a8
A. B. Kalmynin; S. V. Konyagin. Large Gaps between Sums of Two Squareful Numbers. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 589-596. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a8/

[1] S. W. Golomb, “Powerful numbers”, Amer. Math. Monthly, 77 (1970)), 848–855 | DOI | MR

[2] E. Landau, “Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate”, Archiv der Mathematik und Physik (3), 13 (1908), 305–312

[3] V. Blomer, “Binary quadratic forms with large discriminants and sums of two squareful numbers. II”, J. London Math. Soc. (2), 71:1 (2005), 69–84 | DOI | MR

[4] V. Blomer, A. Granville, “Estimates for representation numbers of quadratic forms”, Duke Math. J., 135:2 (2006), 261–302 | DOI | MR

[5] P. Erdős, “Some problems and results in elementary number theory.”, Publ. Math. Debrecen, 2 (1951), 103–109 | MR

[6] I. Richards, “On the gaps between numbers which are sums of two squares”, Adv. in Math., 46:1 (1982), 1–2 | DOI | MR

[7] R. Dietmann, C. Elsholtz, A. Kalmynin, S. Konyagin, J. Maynard, “Longer gaps between values of binary quadratic forms”, Int. Math. Res. Not. IMRN, 12 (2023), 10313–10349 | DOI | MR

[8] H. Iwaniec, E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR