Keywords: integral modulus of continuity, Titchmarsh's equivalence theorem
@article{MZM_2024_115_4_a7,
author = {S. S. Volosivets},
title = {Generalized {Multiple} {Multiplicative} {Fourier} {Transform} and {Estimates} of {Integral} {Moduli} of {Continuity}},
journal = {Matemati\v{c}eskie zametki},
pages = {578--588},
year = {2024},
volume = {115},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a7/}
}
TY - JOUR AU - S. S. Volosivets TI - Generalized Multiple Multiplicative Fourier Transform and Estimates of Integral Moduli of Continuity JO - Matematičeskie zametki PY - 2024 SP - 578 EP - 588 VL - 115 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a7/ LA - ru ID - MZM_2024_115_4_a7 ER -
S. S. Volosivets. Generalized Multiple Multiplicative Fourier Transform and Estimates of Integral Moduli of Continuity. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 578-588. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a7/
[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR
[2] S. S. Volosivets, B. I. Golubov, “Vesovaya integriruemost kratnykh multiplikativnykh preobrazovanii Fure”, Matem. zametki, 111:3 (2022), 365–374 | DOI | MR
[3] A. Zigmund, Trigonometricheskie ryady, v. 2, Mir, M., 1965 | MR
[4] S. S. Platonov, “Ob analoge odnoi teoremy Titchmarsha dlya preobrazovaniya Fure–Uolsha”, Matem. zametki, 103:1 (2018), 101–110 | DOI | MR
[5] E. Ch. Titchmarsh, Vvedenie v teoriyu integralov Fure, GITTL, M.-L., 1948 | MR
[6] S. S. Volosivets, “Ob odnom obobschenii multiplikativnogo preobrazovaniya Fure i ego svoistvakh”, Matem. zametki, 89:3 (2011), 323–330 | DOI | MR
[7] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[8] S. S. Volosivets, “O modifitsirovannykh multiplikativnykh integrale i proizvodnoi proizvolnogo poryadka na poluosi”, Izv. RAN. Ser. matem., 70:2 (2006), 3–24 | DOI | MR | Zbl
[9] S. S. Volosivets, “Modifitsirovannye $\mathbf P$-integral i $\mathbf P$-proizvodnaya i ikh prilozheniya”, Matem. sb., 203:5 (2012), 3–32 | DOI | MR | Zbl
[10] L. Grafakos, Classical Fourier Analysis, Grad. Texts in Math., 249, Springer, New York, 2008 | MR