Generalized Multiple Multiplicative Fourier Transform and Estimates of Integral Moduli of Continuity
Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 578-588 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents the properties of generalized multiple multiplicative Fourier transforms. Also, upper and lower bounds are given for the integral modulus of continuity in terms of the mentioned Fourier transforms, and the bound in $L^2$ is unimprovable. As a corollary, an analogue of Titchmarsh's equivalence theorem for the multiplicative Fourier transform is obtained.
Mots-clés : multiplicative Fourier transform, exact constant.
Keywords: integral modulus of continuity, Titchmarsh's equivalence theorem
@article{MZM_2024_115_4_a7,
     author = {S. S. Volosivets},
     title = {Generalized {Multiple} {Multiplicative} {Fourier} {Transform} and {Estimates} of {Integral} {Moduli} of {Continuity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {578--588},
     year = {2024},
     volume = {115},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a7/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Generalized Multiple Multiplicative Fourier Transform and Estimates of Integral Moduli of Continuity
JO  - Matematičeskie zametki
PY  - 2024
SP  - 578
EP  - 588
VL  - 115
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a7/
LA  - ru
ID  - MZM_2024_115_4_a7
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Generalized Multiple Multiplicative Fourier Transform and Estimates of Integral Moduli of Continuity
%J Matematičeskie zametki
%D 2024
%P 578-588
%V 115
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a7/
%G ru
%F MZM_2024_115_4_a7
S. S. Volosivets. Generalized Multiple Multiplicative Fourier Transform and Estimates of Integral Moduli of Continuity. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 578-588. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a7/

[1] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR

[2] S. S. Volosivets, B. I. Golubov, “Vesovaya integriruemost kratnykh multiplikativnykh preobrazovanii Fure”, Matem. zametki, 111:3 (2022), 365–374 | DOI | MR

[3] A. Zigmund, Trigonometricheskie ryady, v. 2, Mir, M., 1965 | MR

[4] S. S. Platonov, “Ob analoge odnoi teoremy Titchmarsha dlya preobrazovaniya Fure–Uolsha”, Matem. zametki, 103:1 (2018), 101–110 | DOI | MR

[5] E. Ch. Titchmarsh, Vvedenie v teoriyu integralov Fure, GITTL, M.-L., 1948 | MR

[6] S. S. Volosivets, “Ob odnom obobschenii multiplikativnogo preobrazovaniya Fure i ego svoistvakh”, Matem. zametki, 89:3 (2011), 323–330 | DOI | MR

[7] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[8] S. S. Volosivets, “O modifitsirovannykh multiplikativnykh integrale i proizvodnoi proizvolnogo poryadka na poluosi”, Izv. RAN. Ser. matem., 70:2 (2006), 3–24 | DOI | MR | Zbl

[9] S. S. Volosivets, “Modifitsirovannye $\mathbf P$-integral i $\mathbf P$-proizvodnaya i ikh prilozheniya”, Matem. sb., 203:5 (2012), 3–32 | DOI | MR | Zbl

[10] L. Grafakos, Classical Fourier Analysis, Grad. Texts in Math., 249, Springer, New York, 2008 | MR