S. R. Nasyrov's Problem of Approximation by Simple Partial Fractions on an Interval
Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 568-577 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 2014, S. R. Nasyrov asked whether it is true that simple partial fractions (logarithmic derivatives of complex polynomials) with poles on the unit circle are dense in the complex space $L_2[-1,1]$. In 2019, M. A. Komarov answered this question in the negative. The present paper contains a simple solution of Nasyrov's problem different from Komarov's one. Results related to the following generalizing questions are obtained: (a) of the density of simple partial fractions with poles on the unit circle in weighted Lebesgue spaces on $[-1,1]$; (b) of the density in $L_2[-1,1]$ of simple partial fractions with poles on the boundary of a given domain for which $[-1,1]$ is an inner chord.
Keywords: approximation, simple partial fraction
Mots-clés : Lebesgue space, constraints on poles.
@article{MZM_2024_115_4_a6,
     author = {P. A. Borodin and A. M. Ershov},
     title = {S.~R.~Nasyrov's {Problem} of {Approximation} by {Simple} {Partial} {Fractions} on an {Interval}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {568--577},
     year = {2024},
     volume = {115},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a6/}
}
TY  - JOUR
AU  - P. A. Borodin
AU  - A. M. Ershov
TI  - S. R. Nasyrov's Problem of Approximation by Simple Partial Fractions on an Interval
JO  - Matematičeskie zametki
PY  - 2024
SP  - 568
EP  - 577
VL  - 115
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a6/
LA  - ru
ID  - MZM_2024_115_4_a6
ER  - 
%0 Journal Article
%A P. A. Borodin
%A A. M. Ershov
%T S. R. Nasyrov's Problem of Approximation by Simple Partial Fractions on an Interval
%J Matematičeskie zametki
%D 2024
%P 568-577
%V 115
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a6/
%G ru
%F MZM_2024_115_4_a6
P. A. Borodin; A. M. Ershov. S. R. Nasyrov's Problem of Approximation by Simple Partial Fractions on an Interval. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 568-577. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a6/

[1] V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Ekstremalnye i approksimativnye svoistva naiprosteishikh drobei”, Izv. vuzov. Matem., 2018, no. 12, 9–49 | MR

[2] J. Korevaar, “Asymptotically neutral distributions of electrons and polynomial approximation”, Ann. of Math. (2), 80:2 (1964), 403–410 | DOI | MR

[3] P. A. Borodin, “Priblizhenie naiprosteishimi drobyami s ogranicheniem na polyusy. II”, Matem. sb., 207:3 (2016), 19–30 | DOI | MR

[4] J. M. Elkins, “Approximation by polynomials with restricted zeros”, J. Math. Anal. Appl., 25:2 (1969), 321–336 | DOI | MR

[5] P. A. Borodin, K. S. Shklyaev, “Priblizhenie naiprosteishimi drobyami v neogranichennykh oblastyakh”, Matem. sb., 212:4 (2021), 3–28 | DOI | MR

[6] M. A. Komarov, “A lower bound for the $L_2[-1, 1]$-norm of the logarithmic derivative of polynomials with zeros on the unit circle”, Probl. Anal. Issues Anal., 8:2 (2019), 67–72 | DOI | MR

[7] M. A. Komarov, “A Newman type bound for $L_p[-1, 1]$-means of the logarithmic derivative of polynomials having all zeros on the unit circle”, Constr. Approx., 58:3 (2023), 551–563 | DOI | MR

[8] M. A. Komarov, “Plotnost naiprosteishikh drobei s polyusami na okruzhnosti v vesovykh prostranstvakh dlya kruga i otrezka”, Vestnik SPbGU. Matematika. Mekhanika. Astronomiya, 2023 (to appear)

[9] P. A. Borodin, “Plotnost polugruppy v banakhovom prostranstve”, Izv. RAN. Ser. matem., 78:6 (2014), 21–48 | DOI | MR | Zbl

[10] Dzh. Distel, Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980 | MR

[11] T. Gamelin, Ravnomernye algebry, Mir, M., 1973 | MR