Group of Isometries of the Lattice $K_0(\mathbb P_n)$
Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 552-567 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the group of isometries of the Grothendieck group $K_0(\mathbb P_n)$ which is equipped with a bilinear asymmetric Euler form. We prove several properties of this group; in particular, we show that it is isomorphic to the direct product of $\mathbb Z/2\mathbb Z$ and the free Abelian group of rank $[(n+1)/2]$. We also explicitly calculate its generators for $n\leqslant 6$.
Keywords: projective space, coherent sheaf, Grothendieck group, isometry.
@article{MZM_2024_115_4_a5,
     author = {I. S. Beldiev},
     title = {Group of {Isometries} of the {Lattice} $K_0(\mathbb P_n)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {552--567},
     year = {2024},
     volume = {115},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a5/}
}
TY  - JOUR
AU  - I. S. Beldiev
TI  - Group of Isometries of the Lattice $K_0(\mathbb P_n)$
JO  - Matematičeskie zametki
PY  - 2024
SP  - 552
EP  - 567
VL  - 115
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a5/
LA  - ru
ID  - MZM_2024_115_4_a5
ER  - 
%0 Journal Article
%A I. S. Beldiev
%T Group of Isometries of the Lattice $K_0(\mathbb P_n)$
%J Matematičeskie zametki
%D 2024
%P 552-567
%V 115
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a5/
%G ru
%F MZM_2024_115_4_a5
I. S. Beldiev. Group of Isometries of the Lattice $K_0(\mathbb P_n)$. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 552-567. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a5/

[1] A. A. Beilinson, “Algebraic vector bundles on $\mathbb P^n$ and problems of linear algebra”, Funct. Anal. Appl., 172:12 (1978), 68–69 | MR

[2] A. A. Bondal, “Simplekticheskii gruppoid treugolnykh bilineinykh form i gruppa kos”, Izv. RAN. Ser. matem., 68:4 (2004), 19–74 | DOI | MR | Zbl

[3] A. L. Gorodentsev, A. N. Rudakov, “Exceptional vector bundles on projective spaces”, Duke Math. J., 54:1 (1987), 115–130 | DOI | MR

[4] D. Yu. Nogin, “Spirali perioda chetyre i uravneniya tipa Markova”, Izv. AN SSSR. Ser. matem., 54:4 (1990), 862–878 | MR | Zbl

[5] A.L. Gorodentsev, Non-symmetric orthogonal geometry of Grothendieck rings of coherent sheaves on projective spaces, arXiv: abs/alg-geom/9409005

[6] J.-P. Serre, Lie Algebras and Lie Groups, Benjamin, New-York, 1965 | MR