On the Convergence Rate in a Local Renewal Theorem for a Random Markov Walk
Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 521-532 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Suppose that a sequence $\{X_n\}_{n\ge 0}$ of random variables is a homogeneous indecomposable Markov chain with finite set of states. Let $\xi_n$, $n\in\mathbb{N}$, be random variables defined on the chain transitions. The reconstruction function $$ u_k:=\sum_{n=0}^{+\infty} \mathsf P(S_n=k), \qquad k\in\mathbb{N}, $$ where $S_0:=0$ and $S_n:=\xi_1+\dots + \xi_n$, $n\in\mathbb{N}$, is introduced. It is shown that this function converges to its limit with exponential rate, and an explicit description of the exponent is given.
Keywords: local reconstruction theorem
Mots-clés : Markov chain.
@article{MZM_2024_115_4_a3,
     author = {G. A. Bakai},
     title = {On the {Convergence} {Rate} in a {Local} {Renewal} {Theorem} for a {Random} {Markov} {Walk}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {521--532},
     year = {2024},
     volume = {115},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a3/}
}
TY  - JOUR
AU  - G. A. Bakai
TI  - On the Convergence Rate in a Local Renewal Theorem for a Random Markov Walk
JO  - Matematičeskie zametki
PY  - 2024
SP  - 521
EP  - 532
VL  - 115
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a3/
LA  - ru
ID  - MZM_2024_115_4_a3
ER  - 
%0 Journal Article
%A G. A. Bakai
%T On the Convergence Rate in a Local Renewal Theorem for a Random Markov Walk
%J Matematičeskie zametki
%D 2024
%P 521-532
%V 115
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a3/
%G ru
%F MZM_2024_115_4_a3
G. A. Bakai. On the Convergence Rate in a Local Renewal Theorem for a Random Markov Walk. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 521-532. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a3/

[1] H. Kesten, “Renewal theory for functionals of a Markov chain with general state space”, Ann. Probability, 2:3 (1974), 355–386 | DOI | MR

[2] G. Alsmeyer, “On the Markov renewal theorem”, Stochastic Process. Appl., 50:1 (1994), 37–56 | DOI | MR

[3] V. M. Shurenkov, “K teorii markovskogo vosstanovleniya”, Teoriya veroyatn. i ee primen., 29:2 (1984), 248–263 | MR | Zbl

[4] C.-D. Fuh, T. Leung, “Asymptotic expansions in multidimensional Markov renewal theory and first passage times for Markov random walks”, Adv. in Appl. Probab., 33:3 (2001), 652–673 | DOI | MR

[5] A. E. Zaslavskii, “Exponential rate-of-convergence estimate in the renewal theorem for random variables given on a Markov chain”, Mathematical transactions of the Academy of Sciences of the Lithuanian SSR, 13 (1973), 416–418 | MR

[6] B. A. Rogozin, “Otsenka ostatochnogo chlena v predelnykh teoremakh teorii vosstanovleniya”, Teoriya veroyatn. i ee primen., 18:4 (1973), 703–717 | MR | Zbl

[7] A. A. Borovkov, “Zamechaniya k teoremam Vinera i Blekuella”, Teoriya veroyatn. i ee primen., 9:2 (1964), 331–343 | MR | Zbl

[8] I. Marek, “Frobenius theory of positive operators: Comparison theorems and applications”, SIAM J. Appl. Math., 19:3 (1970), 607–628 | DOI | MR