@article{MZM_2024_115_4_a2,
author = {M. A. Anokhina},
title = {Limit theorem for the {Moment} at {Which} a {Random} {Walk} {Attains} {Its} {Maximum} at a {Fixed} {Level} in the {Region} of {Tempered} {Deviations}},
journal = {Matemati\v{c}eskie zametki},
pages = {502--520},
year = {2024},
volume = {115},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a2/}
}
TY - JOUR AU - M. A. Anokhina TI - Limit theorem for the Moment at Which a Random Walk Attains Its Maximum at a Fixed Level in the Region of Tempered Deviations JO - Matematičeskie zametki PY - 2024 SP - 502 EP - 520 VL - 115 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a2/ LA - ru ID - MZM_2024_115_4_a2 ER -
%0 Journal Article %A M. A. Anokhina %T Limit theorem for the Moment at Which a Random Walk Attains Its Maximum at a Fixed Level in the Region of Tempered Deviations %J Matematičeskie zametki %D 2024 %P 502-520 %V 115 %N 4 %U http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a2/ %G ru %F MZM_2024_115_4_a2
M. A. Anokhina. Limit theorem for the Moment at Which a Random Walk Attains Its Maximum at a Fixed Level in the Region of Tempered Deviations. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 502-520. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a2/
[1] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984 | MR
[2] V. I. Afanasev, “Sluchainye bluzhdaniya i vetvyaschiesya protsessy”, Lekts. kursy NOTs, 6, MIAN, M., 2007, 3–187 | DOI | Zbl
[3] E. Sparre Andersen, “On the fluctuations of sums of random variables”, Math. Scand., 1:2 (1953), 263–285 | MR
[4] A. Dvoretzky, Th. Motzkin, “A problem of arrangements”, Duke Math. J., 14:2 (1947), 305–313 | MR
[5] F. Caravenna, “A local limit theorem for random walks conditioned to stay positive”, Probab. Theory Related Fields, 133:4 (2005), 508–530 | DOI | MR
[6] A. V. Shklyaev, “Predelnye teoremy dlya sluchainogo bluzhdaniya pri uslovii bolshogo ukloneniya maksimuma”, Teoriya veroyatn. i ee primen., 55:3 (2010), 590–598 | DOI | MR
[7] A. A. Borovkov, Teoriya veroyatnostei, Nauka, M., 2009 | MR
[8] M. Klass, “On the maximum of a random walk with small negative drift”, Ann. Probab., 11:3 (1983), 491–505 | DOI | MR
[9] S. Resnick, A Probability Path, Birkhäuser, Boston, MA, 2005 | MR