Limit theorem for the Moment at Which a Random Walk Attains Its Maximum at a Fixed Level in the Region of Tempered Deviations
Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 502-520 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a random walk with zero mean and finite variance whose steps are arithmetic. The limit arcsine law for the time at which a walk attains its maximum is well known. In this paper, we consider the distribution of the moment of attaining the maximum under the assumption that the maximum value itself is fixed. We show that, in the case of a tempered deviation of the maximum, the distribution of the moment of the maximum with appropriate normalization converges to the chi-square distribution with one degree of freedom. Similar results were obtained in the nonlattice case.
Keywords: random walks, local limit theorems, integro-local limit theorems.
@article{MZM_2024_115_4_a2,
     author = {M. A. Anokhina},
     title = {Limit theorem for the {Moment} at {Which} a {Random} {Walk} {Attains} {Its} {Maximum} at a {Fixed} {Level} in the {Region} of {Tempered} {Deviations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {502--520},
     year = {2024},
     volume = {115},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a2/}
}
TY  - JOUR
AU  - M. A. Anokhina
TI  - Limit theorem for the Moment at Which a Random Walk Attains Its Maximum at a Fixed Level in the Region of Tempered Deviations
JO  - Matematičeskie zametki
PY  - 2024
SP  - 502
EP  - 520
VL  - 115
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a2/
LA  - ru
ID  - MZM_2024_115_4_a2
ER  - 
%0 Journal Article
%A M. A. Anokhina
%T Limit theorem for the Moment at Which a Random Walk Attains Its Maximum at a Fixed Level in the Region of Tempered Deviations
%J Matematičeskie zametki
%D 2024
%P 502-520
%V 115
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a2/
%G ru
%F MZM_2024_115_4_a2
M. A. Anokhina. Limit theorem for the Moment at Which a Random Walk Attains Its Maximum at a Fixed Level in the Region of Tempered Deviations. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 502-520. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a2/

[1] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 1, Mir, M., 1984 | MR

[2] V. I. Afanasev, “Sluchainye bluzhdaniya i vetvyaschiesya protsessy”, Lekts. kursy NOTs, 6, MIAN, M., 2007, 3–187 | DOI | Zbl

[3] E. Sparre Andersen, “On the fluctuations of sums of random variables”, Math. Scand., 1:2 (1953), 263–285 | MR

[4] A. Dvoretzky, Th. Motzkin, “A problem of arrangements”, Duke Math. J., 14:2 (1947), 305–313 | MR

[5] F. Caravenna, “A local limit theorem for random walks conditioned to stay positive”, Probab. Theory Related Fields, 133:4 (2005), 508–530 | DOI | MR

[6] A. V. Shklyaev, “Predelnye teoremy dlya sluchainogo bluzhdaniya pri uslovii bolshogo ukloneniya maksimuma”, Teoriya veroyatn. i ee primen., 55:3 (2010), 590–598 | DOI | MR

[7] A. A. Borovkov, Teoriya veroyatnostei, Nauka, M., 2009 | MR

[8] M. Klass, “On the maximum of a random walk with small negative drift”, Ann. Probab., 11:3 (1983), 491–505 | DOI | MR

[9] S. Resnick, A Probability Path, Birkhäuser, Boston, MA, 2005 | MR