On Locally Chebyshev Sets
Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 626-633 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that every connected boundedly compact locally Chebyshev set in a normed space is a Chebyshev set.
Keywords: Chebyshev set, metric projection, normed space.
@article{MZM_2024_115_4_a12,
     author = {K. S. Shklyaev},
     title = {On {Locally} {Chebyshev} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {626--633},
     year = {2024},
     volume = {115},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a12/}
}
TY  - JOUR
AU  - K. S. Shklyaev
TI  - On Locally Chebyshev Sets
JO  - Matematičeskie zametki
PY  - 2024
SP  - 626
EP  - 633
VL  - 115
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a12/
LA  - ru
ID  - MZM_2024_115_4_a12
ER  - 
%0 Journal Article
%A K. S. Shklyaev
%T On Locally Chebyshev Sets
%J Matematičeskie zametki
%D 2024
%P 626-633
%V 115
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a12/
%G ru
%F MZM_2024_115_4_a12
K. S. Shklyaev. On Locally Chebyshev Sets. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 626-633. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a12/

[1] V. A. Koscheev, “Svyaznost i nekotorye approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, Matem. zametki, 17:2 (1975), 193–204 | MR | Zbl

[2] A. R. Alimov, “Lokalnaya solnechnost solnts v lineinykh normirovannykh prostranstvakh”, Fundament. i prikl. matem., 17:7 (2012), 3–14

[3] A. R. Alimov, “On approximative properties of locally Chebyshev sets”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44:1 (2018), 36–42 | MR

[4] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl

[5] A. A. Flerov, “Lokalno chebyshevskie mnozhestva na ploskosti”, Matem. zametki, 97:1 (2015), 142–149 | DOI | MR | Zbl

[6] K. S. Shklyaev, “Svyaznoe kompaktnoe lokalno chebyshevskoe mnozhestvo v konechnomernom prostranstve yavlyaetsya chebyshevskim”, Matem. sb., 211:3 (2020), 158–168 | DOI | MR

[7] A. A. Flerov, Izbrannye geometricheskie svoistva mnozhestv s konechnoznachnoi metricheskoi proektsiei, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 2016

[8] L. P. Vlasov, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (174) (1973), 3–66 | MR | Zbl