To the Continuation of Germs of Solutions
Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 619-625 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the note, by a model example of a linear partial differential equation, it is demonstrated how the properties of continuation of germs of generalized solutions are changed depending on the type of differential system generated by the principal real analytical symbol of the equation and on the membership of the infinitely differentiable coefficient at the lowest term of the equation to the class of real analytical functions.
Mots-clés : unique continuation
Keywords: germ of a solution.
@article{MZM_2024_115_4_a11,
     author = {N. A. Shananin},
     title = {To the {Continuation} of {Germs} of {Solutions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {619--625},
     year = {2024},
     volume = {115},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a11/}
}
TY  - JOUR
AU  - N. A. Shananin
TI  - To the Continuation of Germs of Solutions
JO  - Matematičeskie zametki
PY  - 2024
SP  - 619
EP  - 625
VL  - 115
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a11/
LA  - ru
ID  - MZM_2024_115_4_a11
ER  - 
%0 Journal Article
%A N. A. Shananin
%T To the Continuation of Germs of Solutions
%J Matematičeskie zametki
%D 2024
%P 619-625
%V 115
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a11/
%G ru
%F MZM_2024_115_4_a11
N. A. Shananin. To the Continuation of Germs of Solutions. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 619-625. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a11/

[1] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, Mir, M., 1987 | MR

[2] P. K. Rashevskii, “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. Mosk. gos. ped. in-ta im. K. Libnekhta. Ser. fiz.-mat., 3:2 (1938), 83–94

[3] W. L. Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann, 117 (1939), 98–105 | DOI | MR

[4] N. A. Shananin, “O prodolzhenii reshenii lineinykh uravnenii s analiticheskimi koeffitsientami”, Matem. zametki, 111:6 (2022), 921–928 | DOI

[5] N. A. Shananin, “Ob odnoznachnom prodolzhenii reshenii differentsialnykh uravnenii so vzveshennymi proizvodnymi”, Matem. sb., 191:3 (2000), 113–142 | DOI | MR | Zbl