@article{MZM_2024_115_4_a0,
author = {I. A. Alexandrova and S. E. Stepanov and I. I. Tsyganok},
title = {Lichnerowicz {Laplacian} from the {Viewpoint} of {Bochner} {Technique}},
journal = {Matemati\v{c}eskie zametki},
pages = {483--490},
year = {2024},
volume = {115},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a0/}
}
TY - JOUR AU - I. A. Alexandrova AU - S. E. Stepanov AU - I. I. Tsyganok TI - Lichnerowicz Laplacian from the Viewpoint of Bochner Technique JO - Matematičeskie zametki PY - 2024 SP - 483 EP - 490 VL - 115 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a0/ LA - ru ID - MZM_2024_115_4_a0 ER -
I. A. Alexandrova; S. E. Stepanov; I. I. Tsyganok. Lichnerowicz Laplacian from the Viewpoint of Bochner Technique. Matematičeskie zametki, Tome 115 (2024) no. 4, pp. 483-490. http://geodesic.mathdoc.fr/item/MZM_2024_115_4_a0/
[1] H. Wu, The Bochner Technique in Differential Geometry, CTM. Class. Top. Math., 6, Higher Education Press, Beijing, 2017 | MR
[2] A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. (3), 10, Springer-Verlag, Berlin, 1987 | MR
[3] P. Petersen, Riemannian Geometry, Grad. Texts in Math., 171, Springer, Cham, 2016 | MR
[4] S. Pigola, M. Rigoli, A. G. Setti, Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique, Progr. Math., 266, Birkhäuser, Basel, 2008 | MR
[5] P. H. Berard, “From vanishing theorems to estimating theorems: the Bochner technique revisited”, Bull. Amer. Math. Soc., 19:2 (1988), 371–406 | DOI | MR
[6] N. Hitchin, “A note on vanishing theorems”, Geometry and Analysis on Manifolds, Progr. Math., 308, Springer, Cham, 2015, 373–382 | DOI | MR
[7] J. Mikeš, V. Rovenski, S. Stepanov, “An example of Lichnerowicz-type Laplacian”, Ann. Global Anal. Geom., 58:1 (2020), 19–34 | DOI | MR
[8] V. Rovenski, S. Stepanov, I. Tsyganok, “The Bourguignon Laplacian and harmonic symmetric bilinear forms”, Mathematics, 8:1 (2020), 83 | DOI
[9] S.-T. Yau, “Erratum: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, Indiana Univ. Math. J., 31:4 (1982), 607 | DOI | MR
[10] S.-T. Yau, “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, Indiana Univ. Math. J., 25:1 (1976), 659–670 | DOI | MR
[11] P. Petersen, C. Sprouse, “Eigenvalue pinching for Riemannian vector bundles”, J. Reine Angew. Math., 511 (1999), 73–86 | DOI | MR
[12] A. Lichnerowicz, “Propagateurs et commutateurs en relativité générale”, Inst. Hautes Études Sci. Publ. Math., 10:1 (1961), 293–344 | MR
[13] R. E. Greene, Y. Wu, “Integrals of subharmonic functions on manifolds of nonnegative curvature”, Invent. Math., 27 (1974), 265–298 | DOI | MR
[14] M. T. Anderson, “$L^2$-Harmonic forms on complete Riemannian manifolds”, Geometry and Analysis on Manifolds (Katata/Kyoto, 1987), Lecture Notes in Math., 1339, Springer-Verlag, Berlin, 1988, 1–19 | MR
[15] P. Li, R. Schoen, “$L^p$ and mean value properties of subharmonic functions on Riemannian manifolds”, Acta Math., 153:3–4 (1984), 279–301 | DOI | MR
[16] R. E. Greene, H. Wu, “Harmonic forms on noncompact Riemannian and Kähler manifolds”, Michigan Math. J., 28:1 (1981), 63–81 | DOI | MR
[17] S. Gallot, D. Meyer, “Sur la premère valeur propre du $p$-spectre pour les variétés à opérateur de courbure positif”, C. R. Acad. Sci. Paris Sér. A-B, 276 (1973), 1619–1621 | MR
[18] S. Gallot, D. Meyer, “Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne”, J. Math. Pures Appl. (9), 54:3 (1975), 259–284 | MR
[19] C. Bohm, B. Wilking, “Manifolds with positive curvature operators are space forms”, Ann. of Math. (2), 167:3 (2008), 1079–1097 | DOI | MR