@article{MZM_2024_115_3_a6,
author = {V. V. Obukhovskii and G. Petrosyan and M. Soroka},
title = {On an {Initial} {Value} {Problem} for {Nonconvex-Valued} {Fractional} {Differential}},
journal = {Matemati\v{c}eskie zametki},
pages = {392--407},
year = {2024},
volume = {115},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a6/}
}
TY - JOUR AU - V. V. Obukhovskii AU - G. Petrosyan AU - M. Soroka TI - On an Initial Value Problem for Nonconvex-Valued Fractional Differential JO - Matematičeskie zametki PY - 2024 SP - 392 EP - 407 VL - 115 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a6/ LA - ru ID - MZM_2024_115_3_a6 ER -
V. V. Obukhovskii; G. Petrosyan; M. Soroka. On an Initial Value Problem for Nonconvex-Valued Fractional Differential. Matematičeskie zametki, Tome 115 (2024) no. 3, pp. 392-407. http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a6/
[1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 | MR
[2] I. Podlubny, Fractional Differential Equations, Math. Sci. Engrg., 198, Academic Press, San Diego, 1999 | MR
[3] V. E. Tarasov, Fractional Dynamics. Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Nonlinear Phys. Sci., Springer, Beijing, 2010 | MR
[4] M. I. Ilolov, D. N. Guldzhonov, Dzh. Sh. Rakhmatov, “Funktsionalno-differentsialnye vklyucheniya tipa Kheila s drobnym poryadkom proizvodnoi v banakhovom prostranstve”, Chebyshevskii sb., 20:4 (2019), 208–225 | DOI | MR
[5] J. Appell, B. Lopez, K. Sadarangani, “Existence and uniqueness of solutions for a nonlinear fractional initial value problem involving Caputo derivatives”, Nonlinear Var. Anal., 2 (2018), 25–33 | DOI
[6] G. G. Gomoyunov, “Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems”, Fract. Calc. Appl. Anal., 21:5 (2018), 1238–1261 | DOI | MR
[7] G. G. Gomoyunov, “Approximation of fractional order conflict-controlled systems”, Prog. Fract. Diff. Appl., 5:2 (2019), 143–155 | DOI
[8] M. Kamenskii, V. Obukhoskii, G. Petrosyan, J.-C. Yao, “On the existence of a unique solution for a class of fractional differential inclusions in a Hilbert space”, Mathematics, 9 (2021), 136–154 | DOI
[9] T. D. Ke, N. V. Loi, V. V. Obukhovskii, “Decay solutions for a class of fractional differential variational inequalities”, Fract. Calc. Appl. Anal., 18:3 (2015), 531–553 | DOI | MR
[10] T. D. Ke, V. V. Obukhovskii, N. C. Wong, J. C. Yao, “On a class of fractional order differential inclusions with infinite delays”, Appl. Anal., 92:1 (2013), 115–137 | DOI | MR
[11] F. Mainardi, S. Rionero, T. Ruggeri, “On the initial value problem for the fractional diffusion-wave equation”, Waves and Stability in Continuous Media (Bologna, 1993), Ser. Adv. Math. Appl. Sci., 23, World Scientific, River Edge, NJ, 1994, 246–251 | MR
[12] V. Obukhovskii, G. Petrosyan, C.-F. Wen, V. Bocharov, “On semilinear fractional differential inclusions with a nonconvex-valued right-hand side in Banach spaces”, Nonlinear Var. Anal, 6 (2022), 185–197
[13] M. Afanasova, V. Obukhovskii, G. Petrosyan, “A controllability problem for causal functional inclusions with an infinite delay and impulse conditions”, Adv. Syst. Sci. Appl., 21:3 (2021), 40–62
[14] M. S. Afanasova, V. V. Obukhovskii, G. G. Petrosyan, “Ob obobschennoi kraevoi zadache dlya upravlyaemoi sistemy s obratnoi svyazyu i beskonechnym zapazdyvaniem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:2 (2021), 167–185 | DOI | MR
[15] M. S. Afanasova, G. G. Petrosyan, “O kraevoi zadache dlya funktsionalno-differentsialnogo vklyucheniya drobnogo poryadka s obschim nachalnym usloviem v banakhovom prostranstve”, Izv. vuzov. Matem., 2019, no. 9, 3–15 | DOI | MR
[16] I. Benedetti, V. Obukhovskii, V. Taddei, “On generalized boundary value problems for a class of fractional differential inclusions”, Fract. Calc. Appl. Anal, 20:6 (2017), 1424–1446 | DOI | MR
[17] M. Belmekki, J. J. Nieto, R. Rodriguez-Lopez, “Existence of periodic solution for a nonlinear fractional differential equation”, Bound. Value Probl., 2009, 1–18 | DOI | MR
[18] M. Belmekki, J. J. Nieto, R. Rodiguez-Lopez, “Existence of solution to a periodic boundary value problem for a nonlinear impulsive fractional differential equation”, Electron. J. Qual. Theory Diff. Equ., 16 (2014), 1–27 | DOI | MR
[19] Z. Bai, H. Lu, “Positive solutions for boundary value problem of nonlinear fractional differential equation”, J. Math. Anal. Appl, 311:2 (2005), 495–505 | DOI | MR
[20] M. I. Kamenskii, V. V. Obukhoskii, G. G. Petrosyan, J. C. Yao, “On a periodic boundary value problem for a fractional order semilinear functional differential inclusions in a Banach space”, Mathematics, 7 (2019), 5–19 | DOI | MR
[21] M. I. Kamenskii, G. G. Petrosyan, C. F. Wen, “An existence result for a periodic boundary value problem of fractional semilinear differential equations in a Banach space”, J. Nonl. Var. Anal., 5 (2021), 155–177 | DOI | MR
[22] M. Kamenskii, G. Petrosyan, P. Raynaud de Fitte, J.-C. Yao, “On a periodic boundary value problem for fractional quasilinear differential equations with a self-adjoint positive operator in Hilbert spaces”, Mathematics, 10:2 (2022), 219–231 | DOI
[23] R. P. Agarwal, B. Ahmad, “Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions”, Comput. Math. Appl., 62:3 (2011), 1200–1214 | DOI | MR
[24] B. Ahmad, J. J. Nieto, “Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray–Schauder degree theory”, Topol. Methods Nonlinear Anal., 35:2 (2010), 295–304 | MR
[25] G. G. Petrosyan, “Antiperiodic boundary value problem for a semilinear differential equation of fractional order”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 34 (2020), 51–66 | DOI | MR
[26] G. G. Petrosyan, “Ob antiperiodicheskoi kraevoi zadache dlya polulineinogo differentsialnogo vklyucheniya drobnogo poryadka s otklonyayuschimsya argumentom v banakhovom prostranstve”, Ufimsk. matem. zhurn., 12:3 (2020), 71–82
[27] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl., 7, de Gruyter, Berlin, 2001 | MR
[28] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v toriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Librokom, M., 2011 | MR
[29] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Mery nekompaktnosti i uplotnyayuschie operatory, Nauka, Novosibirsk, 1986 | MR
[30] V. A. Kostin, D. V. Kostin, A. V. Kostin, “Operatornye kosinus-funktsii i granichnye zadachi”, Dokl. AN, 486:5 (2019), 531–536 | DOI | MR
[31] J. W. He, Y. Liang, B. Ahmad, Y. Zhou, “Nonlocal fractional evolution inclusions of order $\alpha \in (1,2)$”, Mathematics, 7:2 (2019), 1–17
[32] C. C. Travis, G. F. Webb, “Cosine families and abstract nonlinear second order differential equations”, Acta Math. Acad. Sci. Hungar., 32:1–2 (1978), 75–96 | DOI | MR
[33] Y. Zhou, J. W. He, “New results on controllability of fractional evolution systems with order $\alpha\in (1,2)$”, Evol. Equ. Control Theory, 10:3 (2021), 491–509 | MR
[34] A. Fryszkowski, Fixed Point Theory for Decomposable Sets, Topol. Fixed Point Theory Appl., 2, Kluwer Acad. Publ., Dordrecht, 2004 | MR
[35] K. Deimling, Multivalued Differential Equations, De Gruyter Ser. Nonlinear Anal. Appl., 1, de Gruyter, Berlin, 1992 | MR