Approximation by Refinement Masks
Matematičeskie zametki, Tome 115 (2024) no. 3, pp. 385-391 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a Parseval wavelet frame with a compact support for an arbitrary continuous $2\pi$-periodic function $f$, $f(0)=1$, satisfying the inequality $|f(x)|^2+|f(x+\pi)|^2\leqslant 1$. The frame refinement mask uniformly approximates $f$. The refining function has stable integer shifts.
Keywords: refinement mask, unitary extension principle, Parseval wavelet frame, stability of integer shifts, filter bank
Mots-clés : exact reconstruction.
@article{MZM_2024_115_3_a5,
     author = {E. A. Lebedeva},
     title = {Approximation by {Refinement} {Masks}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {385--391},
     year = {2024},
     volume = {115},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a5/}
}
TY  - JOUR
AU  - E. A. Lebedeva
TI  - Approximation by Refinement Masks
JO  - Matematičeskie zametki
PY  - 2024
SP  - 385
EP  - 391
VL  - 115
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a5/
LA  - ru
ID  - MZM_2024_115_3_a5
ER  - 
%0 Journal Article
%A E. A. Lebedeva
%T Approximation by Refinement Masks
%J Matematičeskie zametki
%D 2024
%P 385-391
%V 115
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a5/
%G ru
%F MZM_2024_115_3_a5
E. A. Lebedeva. Approximation by Refinement Masks. Matematičeskie zametki, Tome 115 (2024) no. 3, pp. 385-391. http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a5/

[1] E. A. Lebedeva, “Wavelet frames with matched masks”, J. Math. Sci. (N.Y.), 266:6 (2022), 886–891 | DOI | MR

[2] R. Larson, “Von Neumann algebras and wavelets”, Operator Algebras and Applications (Samos, 1996), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 495, Kluwer Acad. Publ., Dordrecht, 1997, 267–312 | MR

[3] M. Bownik, “Connectivity and density in the set of framelets”, Math. Res. Lett., 14:2 (2007), 285–293 | DOI | MR

[4] C. Cabrelli, U. M. Molter, “Density of the set of generators of wavelet systems”, Constr. Approx., 26:1 (2007), 65–81 | DOI | MR

[5] A. Ron, Z. Shen, “Affine systems in $L_2(\mathbb{R}^d)$: the analysis of the analysis operator”, J. Funct. Anal., 148:2 (1997), 408–447 | DOI | MR

[6] C. S. Burrus, R. A. Gopinath, H. Guo, Wavelets and Wavelet Transforms, Prentice Hall, Englewood Cliffs, 1998

[7] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, FIZMATLIT, M., 2005 | MR

[8] A. Kh. Turetskii, Teoriya interpolirovaniya v zadachakh, Vysshaya shkola, Minsk, 1968 | MR