Chains with Diffusion-Type Couplings Containing a Large Delay
Matematičeskie zametki, Tome 115 (2024) no. 3, pp. 355-370 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the local dynamics of a system of oscillators with a large number of elements and with diffusion-type couplings containing a large delay. We distinguish critical cases in the problem of stability of the zero equilibrium state and show that all of them have infinite dimensions. Using special methods of infinite normalization, we construct quasinormal forms, that is, nonlinear boundary value problems of parabolic type, whose nonlocal dynamics determines the behavior of solutions of the original system in a small neighborhood of the equilibrium state. These quasinormal forms contain either two or three spatial variables, which emphasizes the complexity of dynamic properties of the original problem.
Keywords: boundary value problem, delay, stability, normal form, dynamics, asymptotics of solutions.
@article{MZM_2024_115_3_a3,
     author = {S. A. Kaschenko},
     title = {Chains with {Diffusion-Type} {Couplings} {Containing} a {Large} {Delay}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {355--370},
     year = {2024},
     volume = {115},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a3/}
}
TY  - JOUR
AU  - S. A. Kaschenko
TI  - Chains with Diffusion-Type Couplings Containing a Large Delay
JO  - Matematičeskie zametki
PY  - 2024
SP  - 355
EP  - 370
VL  - 115
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a3/
LA  - ru
ID  - MZM_2024_115_3_a3
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%T Chains with Diffusion-Type Couplings Containing a Large Delay
%J Matematičeskie zametki
%D 2024
%P 355-370
%V 115
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a3/
%G ru
%F MZM_2024_115_3_a3
S. A. Kaschenko. Chains with Diffusion-Type Couplings Containing a Large Delay. Matematičeskie zametki, Tome 115 (2024) no. 3, pp. 355-370. http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a3/

[1] A. P. Kuznetsov, S. P. Kuznetsov, I. R. Sataev, L. V. Turukina, “About Landau–Hopf scenario in a system of coupled self-oscillators”, Phys. Lett., 377:45–48 (2013), 3291–3295 | DOI | MR

[2] G. V. Osipov, A. S. Pikovsky, M. G. Rosenblum, J. Kurths, “Phase synchronization effects in a lattice of nonidentical Rössler oscillators”, Phys. Rev. E (3), 55:3 (1997), 2353–22361 | DOI | MR

[3] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Sci. Ser., 12, Cambridge Univ. Press, Cambridge, 2001 | MR

[4] R. Dodla, A. Se, G. L. Johnston, “Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators”, Phys. Rev. E (3), 69:5 (2004), 12 | DOI | MR

[5] C. R. S. Williams, F. Sorrentino, T. E. Murphy, R. Roy, “Synchronization states and multistability in a ring of periodic oscillators: experimentally variable coupling delays”, Chaos, 23:4 (2013), 43117 | DOI | MR

[6] R. Rao, Z. Lin, X. Ai, J. Wu, “Synchronization of epidemic systems with Neumann boundary value under delayed impulse”, Mathematics, 10 (2022), 2064 | DOI

[7] Van Der Sande G. et al., “Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators”, Physical Review E. 2008/07/23. APS, 77:5 (2008), 55202 | DOI

[8] V. V. Klinshov, V. I. Nekorkin, “Sinkhronizatsiya avtokolebatelnykh setei s zapazdyvayuschimi svyazyami”, UFN, 183:12 (2013), 1323–1336 | DOI

[9] G. Heinrich, M. Ludwig, J. Qian, B. Kubala, F. Marquardt, “Collective dynamics in optomechanical arrays”, Phys. Rev. Lett., 107:4 (2011), 043603 | DOI

[10] M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, “Synchronization of micromechanical oscillators using light”, Phys. Rev. Lett., 109:23 (2012), 233906 | DOI

[11] T. E. Lee, H. R. Sadeghpour, “Quantum synchronization of quantum van der Pol oscillators with trapped ions”, Phys. Rev. Lett., 111:23 (2013), 234101 | DOI

[12] S. Yanchuk, M. Wolfrum, “A multiple time scale approach to the stability of external cavity modes in the Lang–Kobayashi system using the limit of large delay”, SIAM J. Appl. Dyn. Syst., 9:2 (2010), 519–535 | DOI | MR

[13] S. A. Kaschenko, “Dinamika polnosvyaznykh tsepochek iz bolshogo kolichestva ostsillyatorov s bolshim zapazdyvaniem v svyazyakh”, Izvestiya vuzov. PND, 31:4 (2023), 523–542 | DOI

[14] E. V. Grigorieva, S. A. Kashchenko, “Phase-synchronized oscillations in a unidirectional ring of pump-coupled lasers”, Optics Commun., 545 (2023), 129688 | DOI

[15] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Gostekhizdat, M., 1955 | MR

[16] S. A. Kaschenko, “Primenenie printsipa usredneniya k issledovaniyu dinamiki logisticheskogo uravneniya s zapazdyvaniem”, Matem. zametki, 104:2 (2018), 216–230 | DOI | MR

[17] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[18] N. N. Nefedov, “Development of methods of asymptotic analysis of transition layers in reaction-diffusion-advection equations: theory and applications”, Comput. Math. Math. Phys., 61:12 (2021), 2068–2087 | DOI | MR

[19] S. A. Kaschenko, “Prostranstvennye osobennosti vysokomodovykh bifurkatsii dvukhkomponentnykh sistem s maloi diffuziei”, Differents. uravneniya, 25:2 (1989), 262–270 | MR

[20] S. A. Kaschenko, “Normalization in the systems with small diffusion”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:6 (1996), 1093–1109 | MR

[21] S. A. Kaschenko, “Uravnenie Ginzburga–Landau – normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, Zh. vychisl. matem. i matem. fiz., 38:3 (1998), 457–465 | MR | Zbl

[22] J. E. Marsden, M. F. McCracken, The Hopf Bifurcation and its Applications, 19, Appl. Math. Sci., Springer, New York, 1976 | DOI | MR

[23] J. K. Hale, Theory of functional differential equations., Appl. Math. Sci., 3, Springer Verlag, New York, 1977 | MR

[24] S. A. Kashchenko, “Infinite turing bifurcations in chains of van der Pol systems”, Mathematics, 10:20 (2022), 3769 | DOI

[25] S. A. Kaschenko, “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1052 | MR | Zbl

[26] E. V. Grigorieva, H. Haken, S. A. Kashchenko, “Complexity near equilibrium in model of lasers with delayed optoelectronic feedback”, Proceedings: International Symposium on Nonlinear Theory and its Applications (NOLTA'98, Crans-Montana, Switzerland, 1998), NOLTA Society, 1998, 495–498

[27] S. A. Kaschenko, “Dinamika tsepochki logisticheskikh uravnenii c zapazdyvaniem i s antidiffuzionnoi svyazyu”, Dokl. RAN. Matem., inform., prots. upr., 502 (2022), 23–27 | DOI | MR

[28] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | MR

[29] I. S. Kashchenko, S. A. Kashchenko, “Infinite process of forward and backward bifurcations in the logistic equation with two delays”, Nonl. Phenomena Comp. Sys., 22:4 (2019), 407–412 | DOI