@article{MZM_2024_115_3_a3,
author = {S. A. Kaschenko},
title = {Chains with {Diffusion-Type} {Couplings} {Containing} a {Large} {Delay}},
journal = {Matemati\v{c}eskie zametki},
pages = {355--370},
year = {2024},
volume = {115},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a3/}
}
S. A. Kaschenko. Chains with Diffusion-Type Couplings Containing a Large Delay. Matematičeskie zametki, Tome 115 (2024) no. 3, pp. 355-370. http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a3/
[1] A. P. Kuznetsov, S. P. Kuznetsov, I. R. Sataev, L. V. Turukina, “About Landau–Hopf scenario in a system of coupled self-oscillators”, Phys. Lett., 377:45–48 (2013), 3291–3295 | DOI | MR
[2] G. V. Osipov, A. S. Pikovsky, M. G. Rosenblum, J. Kurths, “Phase synchronization effects in a lattice of nonidentical Rössler oscillators”, Phys. Rev. E (3), 55:3 (1997), 2353–22361 | DOI | MR
[3] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Sci. Ser., 12, Cambridge Univ. Press, Cambridge, 2001 | MR
[4] R. Dodla, A. Se, G. L. Johnston, “Phase-locked patterns and amplitude death in a ring of delay-coupled limit cycle oscillators”, Phys. Rev. E (3), 69:5 (2004), 12 | DOI | MR
[5] C. R. S. Williams, F. Sorrentino, T. E. Murphy, R. Roy, “Synchronization states and multistability in a ring of periodic oscillators: experimentally variable coupling delays”, Chaos, 23:4 (2013), 43117 | DOI | MR
[6] R. Rao, Z. Lin, X. Ai, J. Wu, “Synchronization of epidemic systems with Neumann boundary value under delayed impulse”, Mathematics, 10 (2022), 2064 | DOI
[7] Van Der Sande G. et al., “Dynamics, correlation scaling, and synchronization behavior in rings of delay-coupled oscillators”, Physical Review E. 2008/07/23. APS, 77:5 (2008), 55202 | DOI
[8] V. V. Klinshov, V. I. Nekorkin, “Sinkhronizatsiya avtokolebatelnykh setei s zapazdyvayuschimi svyazyami”, UFN, 183:12 (2013), 1323–1336 | DOI
[9] G. Heinrich, M. Ludwig, J. Qian, B. Kubala, F. Marquardt, “Collective dynamics in optomechanical arrays”, Phys. Rev. Lett., 107:4 (2011), 043603 | DOI
[10] M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen, M. Lipson, “Synchronization of micromechanical oscillators using light”, Phys. Rev. Lett., 109:23 (2012), 233906 | DOI
[11] T. E. Lee, H. R. Sadeghpour, “Quantum synchronization of quantum van der Pol oscillators with trapped ions”, Phys. Rev. Lett., 111:23 (2013), 234101 | DOI
[12] S. Yanchuk, M. Wolfrum, “A multiple time scale approach to the stability of external cavity modes in the Lang–Kobayashi system using the limit of large delay”, SIAM J. Appl. Dyn. Syst., 9:2 (2010), 519–535 | DOI | MR
[13] S. A. Kaschenko, “Dinamika polnosvyaznykh tsepochek iz bolshogo kolichestva ostsillyatorov s bolshim zapazdyvaniem v svyazyakh”, Izvestiya vuzov. PND, 31:4 (2023), 523–542 | DOI
[14] E. V. Grigorieva, S. A. Kashchenko, “Phase-synchronized oscillations in a unidirectional ring of pump-coupled lasers”, Optics Commun., 545 (2023), 129688 | DOI
[15] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Gostekhizdat, M., 1955 | MR
[16] S. A. Kaschenko, “Primenenie printsipa usredneniya k issledovaniyu dinamiki logisticheskogo uravneniya s zapazdyvaniem”, Matem. zametki, 104:2 (2018), 216–230 | DOI | MR
[17] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR
[18] N. N. Nefedov, “Development of methods of asymptotic analysis of transition layers in reaction-diffusion-advection equations: theory and applications”, Comput. Math. Math. Phys., 61:12 (2021), 2068–2087 | DOI | MR
[19] S. A. Kaschenko, “Prostranstvennye osobennosti vysokomodovykh bifurkatsii dvukhkomponentnykh sistem s maloi diffuziei”, Differents. uravneniya, 25:2 (1989), 262–270 | MR
[20] S. A. Kaschenko, “Normalization in the systems with small diffusion”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6:6 (1996), 1093–1109 | MR
[21] S. A. Kaschenko, “Uravnenie Ginzburga–Landau – normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, Zh. vychisl. matem. i matem. fiz., 38:3 (1998), 457–465 | MR | Zbl
[22] J. E. Marsden, M. F. McCracken, The Hopf Bifurcation and its Applications, 19, Appl. Math. Sci., Springer, New York, 1976 | DOI | MR
[23] J. K. Hale, Theory of functional differential equations., Appl. Math. Sci., 3, Springer Verlag, New York, 1977 | MR
[24] S. A. Kashchenko, “Infinite turing bifurcations in chains of van der Pol systems”, Mathematics, 10:20 (2022), 3769 | DOI
[25] S. A. Kaschenko, “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1052 | MR | Zbl
[26] E. V. Grigorieva, H. Haken, S. A. Kashchenko, “Complexity near equilibrium in model of lasers with delayed optoelectronic feedback”, Proceedings: International Symposium on Nonlinear Theory and its Applications (NOLTA'98, Crans-Montana, Switzerland, 1998), NOLTA Society, 1998, 495–498
[27] S. A. Kaschenko, “Dinamika tsepochki logisticheskikh uravnenii c zapazdyvaniem i s antidiffuzionnoi svyazyu”, Dokl. RAN. Matem., inform., prots. upr., 502 (2022), 23–27 | DOI | MR
[28] T. S. Akhromeeva, S. P. Kurdyumov, G. G. Malinetskii, A. A. Samarskii, Nestatsionarnye struktury i diffuzionnyi khaos, Nauka, M., 1992 | MR
[29] I. S. Kashchenko, S. A. Kashchenko, “Infinite process of forward and backward bifurcations in the logistic equation with two delays”, Nonl. Phenomena Comp. Sys., 22:4 (2019), 407–412 | DOI