On Growth Function of $n$-Valued Dynamics
Matematičeskie zametki, Tome 115 (2024) no. 3, pp. 458-465 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper answers the question of V. M. Buchstaber on growth function in case of certain $n$-valued group. This question is in close relation to specific discrete integrable systems. In this paper we find a specific formula for growth function given the case of prime $n$. We also prove a polynomial asymptotic estimate of the growth function in general case. At the end we pose new conjectures and questions regarding growth functions.
Keywords: $n$-valued group, $n$-valued dynamics, growth function
Mots-clés : cyclic composition.
@article{MZM_2024_115_3_a11,
     author = {M. A. Chirkov},
     title = {On {Growth} {Function} of $n${-Valued} {Dynamics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {458--465},
     year = {2024},
     volume = {115},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a11/}
}
TY  - JOUR
AU  - M. A. Chirkov
TI  - On Growth Function of $n$-Valued Dynamics
JO  - Matematičeskie zametki
PY  - 2024
SP  - 458
EP  - 465
VL  - 115
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a11/
LA  - ru
ID  - MZM_2024_115_3_a11
ER  - 
%0 Journal Article
%A M. A. Chirkov
%T On Growth Function of $n$-Valued Dynamics
%J Matematičeskie zametki
%D 2024
%P 458-465
%V 115
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a11/
%G ru
%F MZM_2024_115_3_a11
M. A. Chirkov. On Growth Function of $n$-Valued Dynamics. Matematičeskie zametki, Tome 115 (2024) no. 3, pp. 458-465. http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a11/

[1] V. M. Bukhshtaber, S. P. Novikov, “Formalnye gruppy, stepennye sistemy i operatory Adamsa”, Matem. sb., 84 (126):1 (1971), 81–118 | MR | Zbl

[2] V. M. Bukhshtaber, “Funktsionalnye uravneniya, assotsiirovannye s teoremami slozheniya dlya ellipticheskikh funktsii, i dvuznachnye algebraicheskie gruppy”, UMN, 45:3 (273) (1990), 185–186 | MR | Zbl

[3] V. M. Bukhshtaber, E. G. Ris, “Koltsa nepreryvnykh funktsii, simmetricheskie proizvedeniya i algebry Frobeniusa”, UMN, 59:1 (355) (2004), 125–144 | DOI | MR | Zbl

[4] “$n$-valued groups: theory and applications”, Mosc. Math. J., 6:1 (2006), 57–84 | DOI | MR | Zbl

[5] A. P. Veselov, “Integriruemye otobrazheniya”, UMN, 46:5 (281) (1991), 3–45 | MR | Zbl

[6] V. M. Buchstaber, A. P. Veselov, “Integrable correspondences and algebraic representations of multivalued groups”, Internat. Math. Res. Notices, 1996, no. 8, 381–400 | DOI | MR

[7] A. P. Veselov, “O roste chisla obrazov tochki pri iteratsiyakh mnogoznachnogo otobrazheniya”, Matem. zametki, 49:2 (1991), 29–35 | MR | Zbl

[8] V. M. Bukhshtaber, A. P. Veselov, “Topograf Konveya, $\mathrm{PGL}_2(\mathbb Z)$-dinamika i dvuznachnye gruppy”, UMN, 74:3 (447) (2019), 17–62 | DOI | MR | Zbl

[9] V. M. Buchstaber, V. I. Dragovich, “Two-valued groups, Kummer varieties, and integrable billiards”, Arnold Math. J., 4:1 (2018), 27–57 | DOI | MR

[10] A. Knopfmacher, N. Robbins, “Some properties of cyclic compositions”, Fibonacci Quart., 48:3 (2010), 249–255 | MR

[11] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Grad. Texts in Math., 84, Springer, New York, 1982 | MR

[12] V. V. Prasolov, Mnogochleny, MTsNMO, M., 2003 | MR