Mots-clés : Meixner polynomial, Lebesgue function.
@article{MZM_2024_115_3_a1,
author = {R. M. Gadzhimirzaev},
title = {Convergence of the {Fourier} {Series} in {Meixner{\textendash}Sobolev}},
journal = {Matemati\v{c}eskie zametki},
pages = {330--347},
year = {2024},
volume = {115},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a1/}
}
R. M. Gadzhimirzaev. Convergence of the Fourier Series in Meixner–Sobolev. Matematičeskie zametki, Tome 115 (2024) no. 3, pp. 330-347. http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a1/
[1] P. Barry, P. M. Rajković, M. D. Petković, “An application of Sobolev orthogonal polynomials to the computation of a special Hankel determinant”, Approximation and Computation, Springer Optim. Appl., 42, Springer, New York, 2011, 53–60 | DOI | MR
[2] F. Marcellán, Y. Xu, “On Sobolev orthogonal polynomials”, Expo. Math., 33:3 (2015), 308–352 | DOI | MR
[3] I. I. Sharapudinov, “Ortogonalnye po Sobolevu sistemy funktsii i nekotorye ikh prilozheniya”, UMN, 74:4 (448) (2019), 87–164 | DOI | MR | Zbl
[4] I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Raznostnye uravneniya i polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Vladikavk. matem. zhurn., 19:2 (2017), 58–72 | MR
[5] I. Area, E. Goboy, F. Marcellán, “Inner products involving differences: the Meixner–Sobolev polynomials”, J. Differ. Equations Appl., 6:1 (2000), 1–31 | DOI | MR
[6] S. F. Khwaja, A. B. Olde-Daalhuis, “Uniform asymptotic approximations for the Meixner–Sobolev polynomials”, Anal. Appl. (Singap.), 10:3 (2012), 345–361 | DOI | MR
[7] H. Bavinck, H. V. Haeringen, “Difference equations for generalized Meixner polynomials”, J. Math. Anal. Appl., 184:3 (1994), 453–463 | DOI | MR
[8] H. Bavinck, R. Koekoek, “Difference operators with Sobolev type Meixner polynomials as eigenfunctions”, Comput. Math. Appl., 36:10–12 (1998), 163–177 | MR
[9] I. I. Sharapudinov, Z. D. Gadzhieva, “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321 | DOI | MR
[10] I. I. Sharapudinov, I. G. Guseinov, “Polinomy, ortogonalnye po Sobolevu, porozhdennye polinomami Sharle”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 18:2 (2018), 196–205 | DOI | MR
[11] J. Moreno-Balcázar, “$\delta$-Meixner–Sobolev orthogonal polynomials: Mehler–Heine type formula and zeros”, J. Comput. Appl. Math., 284 (2015), 228–234 | DOI | MR
[12] R. S. Costas-Santos, A. Soria-Lorente, J.-M. Vilaire, “On polynomials orthogonal with respect to an inner product involving higher-order differences: the Meixner case”, Mathematics, 10 (2022), 1952 | DOI
[13] R. M. Gadzhimirzaev, “Approximative properties of Fourier–Meixner sums”, Probl. Anal. Issues Anal., 7 (25):1 (2018), 23-40 | DOI | MR
[14] R. M. Gadzhimirzaev, “Otsenka funktsii Lebega summ Fure po modifitsirovannym polinomam Meiksnera”, Matem. zametki, 106:4 (2019), 519–530 | DOI | MR
[15] I. I. Sharapudinov, Mnogochleny, ortogonalnye na setkakh, Izd-vo Dag. gos. ped. un-ta, Makhachkala, 1997