On the Generation of the Groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$
Matematičeskie zametki, Tome 115 (2024) no. 3, pp. 317-329 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We complete the solution of the problem on the existence of generating triplets of involutions two of which commute for the special linear group $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and the projective special linear group $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$ over the ring of Gaussian integers. The answer has only been unknown for $\mathrm{SL}_5$, $\mathrm{PSL}_6$, and $\mathrm{SL}_{10}$. We explicitly indicate the generating triples of involutions in these three cases, and we make a significant use of computer calculations in the proof. Taking into account the known results for the problem under consideration, as a consequence, we obtain the following two statements. The group $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ ($\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$, respectively) is generated by three involutions two of which commute if and only if $n\geqslant 5$ and $n\neq 6$ (if $n\geqslant 5$, respectively).
Keywords: special and projective special linear groups, ring of Gaussian integers, generating triplet of involutions.
@article{MZM_2024_115_3_a0,
     author = {M. A. Vsemirnov and R. I. Gvozdev and Ya. N. Nuzhin and T. B. Shaipova},
     title = {On the {Generation} of the {Groups} $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {317--329},
     year = {2024},
     volume = {115},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a0/}
}
TY  - JOUR
AU  - M. A. Vsemirnov
AU  - R. I. Gvozdev
AU  - Ya. N. Nuzhin
AU  - T. B. Shaipova
TI  - On the Generation of the Groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$
JO  - Matematičeskie zametki
PY  - 2024
SP  - 317
EP  - 329
VL  - 115
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a0/
LA  - ru
ID  - MZM_2024_115_3_a0
ER  - 
%0 Journal Article
%A M. A. Vsemirnov
%A R. I. Gvozdev
%A Ya. N. Nuzhin
%A T. B. Shaipova
%T On the Generation of the Groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$
%J Matematičeskie zametki
%D 2024
%P 317-329
%V 115
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a0/
%G ru
%F MZM_2024_115_3_a0
M. A. Vsemirnov; R. I. Gvozdev; Ya. N. Nuzhin; T. B. Shaipova. On the Generation of the Groups $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ and $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$. Matematičeskie zametki, Tome 115 (2024) no. 3, pp. 317-329. http://geodesic.mathdoc.fr/item/MZM_2024_115_3_a0/

[1] M. C. Tamburini, P. Zucca, “Generation of certain matrix groups by three involutions, two of which commute”, J. Algebra, 195:2 (1997), 650–661 | DOI | MR

[2] D. V. Levchuk, Ya. N. Nuzhin, “On generation of the group $\mathrm{PSL}_n(\mathbb Z+i\mathbb Z)$ by three involutions, two of which commute”, Zhurn. SFU. Ser. Matem. i fiz., 1:2 (2008), 133–139 | MR

[3] D. V. Levchuk, “O porozhdaemosti gruppy $\mathrm{SL}_7(\mathbb{Z} + i\mathbb{Z})$ tremya involyutsiyami, dve iz kotorykh perestanovochny”, Vestnik NGU, 9:1 (2009), 35–38

[4] Ya. N. Nuzhin, “Tenzornye predstavleniya i porozhdayuschie mnozhestva involyutsii nekotorykh matrichnykh grupp”, Tr. IMM UrO RAN, 26, 2020, 133–141 | DOI | MR

[5] R. I. Gvozdev, Ya. N. Nuzhin, T. B. Shaipova, “O porozhdenii grupp $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ i $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$ tremya involyutsiyami, dve ikh kotorykh perestanovochny”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 40 (2022), 49–62 | DOI | MR

[6] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR

[7] A. I. Kostrikin, Vvedenie v algebru, Nauka, M., 1977 | MR

[8] D. A. Suprunenko, Gruppy matrits, Nauka, M., 1972 | MR