Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2024_115_2_a7, author = {A. O. Leont'eva}, title = {Bernstein {Inequality} for the {Riesz} {Derivative} of {Order} $0<\alpha<1$ of {Entire} {Functions} of {Exponential} {Type} in the {Uniform} {Norm}}, journal = {Matemati\v{c}eskie zametki}, pages = {245--256}, publisher = {mathdoc}, volume = {115}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a7/} }
TY - JOUR AU - A. O. Leont'eva TI - Bernstein Inequality for the Riesz Derivative of Order $0<\alpha<1$ of Entire Functions of Exponential Type in the Uniform Norm JO - Matematičeskie zametki PY - 2024 SP - 245 EP - 256 VL - 115 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a7/ LA - ru ID - MZM_2024_115_2_a7 ER -
%0 Journal Article %A A. O. Leont'eva %T Bernstein Inequality for the Riesz Derivative of Order $0<\alpha<1$ of Entire Functions of Exponential Type in the Uniform Norm %J Matematičeskie zametki %D 2024 %P 245-256 %V 115 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a7/ %G ru %F MZM_2024_115_2_a7
A. O. Leont'eva. Bernstein Inequality for the Riesz Derivative of Order $0<\alpha<1$ of Entire Functions of Exponential Type in the Uniform Norm. Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 245-256. http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a7/
[1] E. M. Stein, “The characterization of functions arising as potentials”, Bull. Amer. Math. Soc., 67:1 (1961), 102–104 | DOI | MR
[2] P. I. Lizorkin, “Opisanie prostranstv $L_p^r(\mathbb R^n)$ v terminakh raznostnykh singulyarnykh integralov”, Matem. sb., 81 (123):1 (1970), 79–91 | MR | Zbl
[3] S. G. Samko, “O prostranstvakh rissovykh potentsialov”, Izv. AN SSSR. Ser. matem., 40:5 (1976), 1143–1172 | MR | Zbl
[4] V. I. Bogachev, Osnovy teorii mery, M.–Izhevsk, RKhD, 2003
[5] N. Danford, Zh. T. Shvarts, Lineinye operatory. Ch. 1: obschaya teoriya, IL, Moskva, 1962 | MR
[6] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v. II, Fizmatlit, M., 2003 | MR
[7] R. P. Boas, Entire Functions, Academic Press, New York, 1954 | MR
[8] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR
[9] N. P. Korneichuk, V. F. Babenko, A. A. Ligun, Ekstremalnye svoistva polinomov i splainov, Naukova dumka, Kiev, 1992 | MR
[10] V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodnykh i ikh prilozheniya, Naukova dumka, Kiev, 2003
[11] G. V. Milovanovic, D. S. Mitrinovic, Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994 | MR
[12] D. V. Gorbachev, “Tochnye neravenstva Bernshteina–Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2021), 58–110 | DOI | MR
[13] V. V. Arestov, “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22 | MR | Zbl
[14] V. V. Arestov, P. Yu. Glazyrina, “Neravenstvo Bernshteina–Sege dlya drobnykh proizvodnykh trigonometricheskikh polinomov”, Tr. IMM UrO RAN, 20:1 (2014), 17–31 | MR
[15] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR
[16] P. I. Lizorkin, “Otsenki trigonometricheskikh integralov i neravenstvo Bernshteina dlya drobnykh proizvodnykh”, Izv. AN SSSR. Ser. mat., 4:3 (1965), 109–126 | MR
[17] G. Szegő, “Über einen Satz des Herrn Serge Bernstein”, Schrift. Königsberg. Gelehrten Gesellschaft., 5:4 (1928), 59–70
[18] G. T. Sokolov, “O nekotorykh ekstremalnykh svoistvakh trigonometricheskikh summ”, Izv. AN SSSR. Otdelenie matem. i estestvennykh nauk, 6–7 (1935), 857–884
[19] A. I. Kozko, “The exact constants in the Bernstein–Zygmund–Szegő inequalities with fractional derivatives and the Jackson–Nikol'skii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416 | MR
[20] O. L. Vinogradov, “O konstantakh v abstraktnykh obratnykh teoremakh teorii priblizhenii”, Algebra i analiz, 34:4 (2022), 22–46
[21] V. V. Arestov, P. Yu. Glazyrina, “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512 | DOI | MR
[22] P. Civin, “Inequalities for trigonometric integrals”, Duke Math. J., 8:4 (1941), 656–665 | DOI | MR
[23] G. N. Vatson, Teoriya besselevykh funktsii, IL, M., 1949 | MR
[24] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR
[25] C. Frappier, P. Olivier, “A quadrature formula involving zeros of Bessel functions”, Math. Comp., 60:201 (1993), 303–316 | DOI | MR
[26] G. R. Grozev, Q. I. Rahman, “A quadrature formula with zeros of Bessel functions as nodes”, Math. Comp., 64:210 (1995), 715–725 | DOI | MR
[27] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR
[28] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. T. 1: Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965 | MR
[29] R. B. Ghanem, C. Frappier, “Explicit quadrature formulae for entire functions of exponential type”, J. Approx. Theory, 92:2 (1998), 267–279 | DOI | MR
[30] D. V. Gorbachev, “Ekstremalnye zadachi dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa”, Matem. zametki, 68:2 (2000), 179–187 | DOI | MR | Zbl
[31] D. V. Gorbachev, “Ekstremalnaya zadacha dlya periodicheskikh funktsii s nositelem v share”, Matem. zametki, 69:3 (2001), 346–352 | DOI | MR | Zbl