Bernstein Inequality for the Riesz Derivative of Order $0\alpha1$ of Entire Functions of Exponential Type in the Uniform Norm
Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 245-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Bernstein's inequality for the Riesz derivative of order $0\alpha1$ of entire functions of exponential type in the uniform norm on the real line. For this operator, the corresponding interpolation formula is obtained; this formula has nonequidistant nodes. Using this formula, the sharp Bernstein inequality is obtained for all $0\alpha1$; namely, the extremal entire function and the sharp constant are written out.
Keywords: entire functions of exponential type, Riesz derivative, Bernstein inequality, uniform norm, Bessel function.
@article{MZM_2024_115_2_a7,
     author = {A. O. Leont'eva},
     title = {Bernstein {Inequality} for the {Riesz} {Derivative} of {Order} $0<\alpha<1$ of {Entire} {Functions} of {Exponential} {Type} in the {Uniform} {Norm}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {245--256},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a7/}
}
TY  - JOUR
AU  - A. O. Leont'eva
TI  - Bernstein Inequality for the Riesz Derivative of Order $0<\alpha<1$ of Entire Functions of Exponential Type in the Uniform Norm
JO  - Matematičeskie zametki
PY  - 2024
SP  - 245
EP  - 256
VL  - 115
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a7/
LA  - ru
ID  - MZM_2024_115_2_a7
ER  - 
%0 Journal Article
%A A. O. Leont'eva
%T Bernstein Inequality for the Riesz Derivative of Order $0<\alpha<1$ of Entire Functions of Exponential Type in the Uniform Norm
%J Matematičeskie zametki
%D 2024
%P 245-256
%V 115
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a7/
%G ru
%F MZM_2024_115_2_a7
A. O. Leont'eva. Bernstein Inequality for the Riesz Derivative of Order $0<\alpha<1$ of Entire Functions of Exponential Type in the Uniform Norm. Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 245-256. http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a7/

[1] E. M. Stein, “The characterization of functions arising as potentials”, Bull. Amer. Math. Soc., 67:1 (1961), 102–104 | DOI | MR

[2] P. I. Lizorkin, “Opisanie prostranstv $L_p^r(\mathbb R^n)$ v terminakh raznostnykh singulyarnykh integralov”, Matem. sb., 81 (123):1 (1970), 79–91 | MR | Zbl

[3] S. G. Samko, “O prostranstvakh rissovykh potentsialov”, Izv. AN SSSR. Ser. matem., 40:5 (1976), 1143–1172 | MR | Zbl

[4] V. I. Bogachev, Osnovy teorii mery, M.–Izhevsk, RKhD, 2003

[5] N. Danford, Zh. T. Shvarts, Lineinye operatory. Ch. 1: obschaya teoriya, IL, Moskva, 1962 | MR

[6] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v. II, Fizmatlit, M., 2003 | MR

[7] R. P. Boas, Entire Functions, Academic Press, New York, 1954 | MR

[8] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR

[9] N. P. Korneichuk, V. F. Babenko, A. A. Ligun, Ekstremalnye svoistva polinomov i splainov, Naukova dumka, Kiev, 1992 | MR

[10] V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodnykh i ikh prilozheniya, Naukova dumka, Kiev, 2003

[11] G. V. Milovanovic, D. S. Mitrinovic, Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994 | MR

[12] D. V. Gorbachev, “Tochnye neravenstva Bernshteina–Nikolskogo dlya polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 22:5 (2021), 58–110 | DOI | MR

[13] V. V. Arestov, “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22 | MR | Zbl

[14] V. V. Arestov, P. Yu. Glazyrina, “Neravenstvo Bernshteina–Sege dlya drobnykh proizvodnykh trigonometricheskikh polinomov”, Tr. IMM UrO RAN, 20:1 (2014), 17–31 | MR

[15] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[16] P. I. Lizorkin, “Otsenki trigonometricheskikh integralov i neravenstvo Bernshteina dlya drobnykh proizvodnykh”, Izv. AN SSSR. Ser. mat., 4:3 (1965), 109–126 | MR

[17] G. Szegő, “Über einen Satz des Herrn Serge Bernstein”, Schrift. Königsberg. Gelehrten Gesellschaft., 5:4 (1928), 59–70

[18] G. T. Sokolov, “O nekotorykh ekstremalnykh svoistvakh trigonometricheskikh summ”, Izv. AN SSSR. Otdelenie matem. i estestvennykh nauk, 6–7 (1935), 857–884

[19] A. I. Kozko, “The exact constants in the Bernstein–Zygmund–Szegő inequalities with fractional derivatives and the Jackson–Nikol'skii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416 | MR

[20] O. L. Vinogradov, “O konstantakh v abstraktnykh obratnykh teoremakh teorii priblizhenii”, Algebra i analiz, 34:4 (2022), 22–46

[21] V. V. Arestov, P. Yu. Glazyrina, “Sharp integral inequalities for fractional derivatives of trigonometric polynomials”, J. Approx. Theory, 164:11 (2012), 1501–1512 | DOI | MR

[22] P. Civin, “Inequalities for trigonometric integrals”, Duke Math. J., 8:4 (1941), 656–665 | DOI | MR

[23] G. N. Vatson, Teoriya besselevykh funktsii, IL, M., 1949 | MR

[24] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[25] C. Frappier, P. Olivier, “A quadrature formula involving zeros of Bessel functions”, Math. Comp., 60:201 (1993), 303–316 | DOI | MR

[26] G. R. Grozev, Q. I. Rahman, “A quadrature formula with zeros of Bessel functions as nodes”, Math. Comp., 64:210 (1995), 715–725 | DOI | MR

[27] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[28] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. T. 1: Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965 | MR

[29] R. B. Ghanem, C. Frappier, “Explicit quadrature formulae for entire functions of exponential type”, J. Approx. Theory, 92:2 (1998), 267–279 | DOI | MR

[30] D. V. Gorbachev, “Ekstremalnye zadachi dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa”, Matem. zametki, 68:2 (2000), 179–187 | DOI | MR | Zbl

[31] D. V. Gorbachev, “Ekstremalnaya zadacha dlya periodicheskikh funktsii s nositelem v share”, Matem. zametki, 69:3 (2001), 346–352 | DOI | MR | Zbl