On Algebraic Properties of Integrals of Products of Some Hypergeometric Functions
Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 208-218
Voir la notice de l'article provenant de la source Math-Net.Ru
Indefinite integrals of products of generalized hypergeometric functions satisfying first-order differential equations are considered. Necessary and sufficient conditions for the algebraic independence of the set of these integrals and of their values at algebraic points are studied. All algebraic identities arising in this case are found in closed form.
Keywords:
generalized hypergeometric function, algebraic independence, Siegel method, $E$-function.
@article{MZM_2024_115_2_a4,
author = {V. A. Gorelov},
title = {On {Algebraic} {Properties} of {Integrals} of {Products} of {Some} {Hypergeometric} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {208--218},
publisher = {mathdoc},
volume = {115},
number = {2},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a4/}
}
V. A. Gorelov. On Algebraic Properties of Integrals of Products of Some Hypergeometric Functions. Matematičeskie zametki, Tome 115 (2024) no. 2, pp. 208-218. http://geodesic.mathdoc.fr/item/MZM_2024_115_2_a4/