On a~Linear Form in the Ordinates of Zeros of the Riemann Zeta Function
Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 137-155
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain an asymptotic formula for the sum
$$
H=\sum_{0\gamma_k\leqslant T,\,1\leqslant k\leqslant 4}h(\gamma_1+\gamma_2-\gamma_3-\gamma_4),
$$
where the $\gamma_k$ run over the imaginary parts of nontrivial zeros of the Riemann zeta function with multiplicities taken into account and the function $h$ belongs to some special class of functions in $L^1(\mathbb R)$.
Keywords:
Riemann zeta function, repulsion phenomenon.
@article{MZM_2024_115_1_a9,
author = {E. D. Iudelevich},
title = {On {a~Linear} {Form} in the {Ordinates} of {Zeros} of the {Riemann} {Zeta} {Function}},
journal = {Matemati\v{c}eskie zametki},
pages = {137--155},
publisher = {mathdoc},
volume = {115},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a9/}
}
E. D. Iudelevich. On a~Linear Form in the Ordinates of Zeros of the Riemann Zeta Function. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 137-155. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a9/