On a~Linear Form in the Ordinates of Zeros of the Riemann Zeta Function
Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 137-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an asymptotic formula for the sum $$ H=\sum_{0\gamma_k\leqslant T,\,1\leqslant k\leqslant 4}h(\gamma_1+\gamma_2-\gamma_3-\gamma_4), $$ where the $\gamma_k$ run over the imaginary parts of nontrivial zeros of the Riemann zeta function with multiplicities taken into account and the function $h$ belongs to some special class of functions in $L^1(\mathbb R)$.
Keywords: Riemann zeta function, repulsion phenomenon.
@article{MZM_2024_115_1_a9,
     author = {E. D. Iudelevich},
     title = {On {a~Linear} {Form} in the {Ordinates} of {Zeros} of the {Riemann} {Zeta} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {137--155},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a9/}
}
TY  - JOUR
AU  - E. D. Iudelevich
TI  - On a~Linear Form in the Ordinates of Zeros of the Riemann Zeta Function
JO  - Matematičeskie zametki
PY  - 2024
SP  - 137
EP  - 155
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a9/
LA  - ru
ID  - MZM_2024_115_1_a9
ER  - 
%0 Journal Article
%A E. D. Iudelevich
%T On a~Linear Form in the Ordinates of Zeros of the Riemann Zeta Function
%J Matematičeskie zametki
%D 2024
%P 137-155
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a9/
%G ru
%F MZM_2024_115_1_a9
E. D. Iudelevich. On a~Linear Form in the Ordinates of Zeros of the Riemann Zeta Function. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 137-155. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a9/

[1] K. Ford, A. Zaharescu, “Unnormalized differences between zeros of $L$-functions”, Compos. Math., 151:2 (2015), 230–252 | DOI | MR

[2] B. Rodgers, “Macroscopic pair correlation of the Riemann zeroes for smooth test functions”, Q. J. Math., 64:4 (2013), 1197–1219 | DOI | MR

[3] R. Pérez Marco, Statistics on Riemann zeros, arXiv: 1112.0346

[4] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1975 | MR

[5] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR

[6] A. Selberg, “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvid., 48:5 (1946), 89–155 | MR

[7] K. Ford, K. Soundararajan, A. Zaharescu, “On the distribution of imaginary parts of zeros of the Riemann zeta function. II”, Math. Ann., 343:3 (2009), 487–505 | DOI | MR