Extremal Interpolation in the Mean in the Space~$L_1(\mathbb R)$ with Overlapping Averaging Intervals
Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 123-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a uniform grid on the real axis $\mathbb R$, we study the Yanenko–Stechkin–Subbotin problem of extremal function interpolation in the mean in the space $L_1(\mathbb R)$ of two-way real sequences with the least value of the norm of a linear formally self-adjoint differential operator $\mathcal L_n$ of order $n$ with constant real coefficients. This problem is considered for the class of sequences for which the generalized finite differences of order $n$ corresponding to the operator $\mathcal L_n$ are bounded in the space $l_1$. In this paper, the least value of the norm is calculated exactly if the grid step $h$ and the averaging step $h_1$ of the function to be interpolated in the mean are related by the inequalities $h$. The paper is a continuation of the research by Yu. N. Subbotin and the author in this problem, initiated by Yu. N. Subbotin in 1965. The result obtained is new, in particular, for the $n$-times differentiation operator $\mathcal L_n(D)=D^n$.
Keywords: extremal interpolation in the mean, spline, uniform grid, formally self-adjoint differential operator, least norm.
@article{MZM_2024_115_1_a8,
     author = {V. T. Shevaldin},
     title = {Extremal {Interpolation} in the {Mean} in the {Space~}$L_1(\mathbb R)$ with {Overlapping} {Averaging} {Intervals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {123--136},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a8/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - Extremal Interpolation in the Mean in the Space~$L_1(\mathbb R)$ with Overlapping Averaging Intervals
JO  - Matematičeskie zametki
PY  - 2024
SP  - 123
EP  - 136
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a8/
LA  - ru
ID  - MZM_2024_115_1_a8
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T Extremal Interpolation in the Mean in the Space~$L_1(\mathbb R)$ with Overlapping Averaging Intervals
%J Matematičeskie zametki
%D 2024
%P 123-136
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a8/
%G ru
%F MZM_2024_115_1_a8
V. T. Shevaldin. Extremal Interpolation in the Mean in the Space~$L_1(\mathbb R)$ with Overlapping Averaging Intervals. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 123-136. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a8/

[1] A. O. Gelfond, Ischislenie konechnykh raznostei, M.: Nauka, 1967 | MR

[2] J. Favard, “Sur l'interpolation”, J. Math. Pures Appl., 19:9 (1940), 281–306 | MR

[3] C. de Boor, “How small can one make the derivatives of an interpolating function?”, J. Approximation Theory, 13:2 (1975), 106–116 | MR

[4] C. de Boor, “A smooth and local interpolant with “small” $k$-th derivative”, Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations (Proc. Sympos., Univ. Maryland, Baltimore, 1974), Academic Press, New York, 1975, 177–197 | MR

[5] M. Golomb, “$H^{m,p}$-extensions by $H^{m,p}$-splines”, J. Approximation Theory, 5:3 (1972), 238–275 | DOI | MR

[6] Yu. N. Subbotin, “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Ekstremalnye svoistva polinomov, Sbornik rabot, Tr. MIAN SSSR, 78, Nauka, M., 1965, 24–42 | MR | Zbl

[7] Yu. N. Subbotin, “Funktsionalnaya interpolyatsiya v srednem s naimenshei $n$-i proizvodnoi”, Priblizhenie funktsii v srednem, Sbornik rabot, Tr. MIAN SSSR, 88, 1967, 30–60 | MR | Zbl

[8] Yu. N. Subbotin, “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Priblizhenie funktsii i operatorov, Sbornik statei, Tr. MIAN SSSR, 138, 1975, 118–173 | MR | Zbl

[9] Yu. N. Subbotin, S. I. Novikov, V. T. Shevaldin, “Ekstremalnaya funktsionalnaya interpolyatsiya i splainy”, Tr. IMM UrO RAN, 24:3 (2018), 200–225 | DOI | MR

[10] Yu. N. Subbotin, “Ekstremalnaya funktsionalnaya interpolyatsiya v srednem s naimenshim znacheniem $n$-i proizvodnoi pri bolshikh intervalakh usredneniya”, Matem. zametki, 59:1 (1996), 114–132 | DOI | MR | Zbl

[11] Yu. N. Subbotin, “Some extremal problems of interpolation and interpolation in the mean”, East J. Approx., 2:2 (1996), 155–167 | MR

[12] Yu. N. Subbotin, “Ekstremalnaya v $L_p$ interpolyatsiya v srednem pri peresekayuschikhsya intervalakh usredneniya”, Izv. RAN. Ser. matem., 61:1 (1997), 177–198 | DOI | MR | Zbl

[13] A. Sharma, I. Tsimbalario, “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Matem. zametki, 21:2 (1977), 161–172 | MR | Zbl

[14] V. T. Shevaldin, “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Ortogonalnye ryady i priblizhenie funktsii, Sbornik statei. Posvyaschaetsya 100-letiyu so dnya rozhdeniya akademika H. N. Luzina, Tr. MIAN SSSR, 164, 1983, 203–240 | MR | Zbl

[15] V. T. Shevaldin, “Ekstremalnaya interpolyatsiya v srednem pri perekryvayuschikhsya intervalakh usredneniya i $L$-splainy”, Izv. RAN. Ser. matem., 62:4 (1998), 201–224 | DOI | MR | Zbl

[16] V. T. Shevaldin, “Ekstremalnaya interpolyatsiya v srednem pri perekryvayuschikhsya intervalakh usredneniya s naimenshim znacheniem normy lineinogo differentsialnogo operatora”, Tr. IMM UrO RAN, 29:1 (2023), 219–232 | DOI | MR

[17] V. T. Shevaldin, “Ekstremalnaya interpolyatsiya s naimenshim znacheniem normy lineinogo differentsialnogo operatora”, Matem. zametki, 27:5 (1980), 721–740 | MR | Zbl

[18] V. T. Shevaldin, “Ob odnoi zadache ekstremalnoi interpolyatsii”, Matem. zametki, 29:4 (1981), 603–622 | MR | Zbl

[19] M. G. Krein, “Integralnye uravneniya na polupryamoi s yadrom, zavisyaschim ot raznosti argumentov”, UMN, 13:5 (83) (1958), 3–120 | MR | Zbl