Implementation of Linear Boolean Functions by Self-Correcting Circuits of Unreliable Logic Gates
Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 91-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if a Boolean function essentially depends on at least two variables, then it cannot be implemented by a circuit that consists of unreliable gates with at most two inputs each and is self-correcting with respect to at least some faults of an arbitrary number of gates. In view of the previous results, it suffices to establish this fact for linear functions.
Keywords: logic circuit, self-correction, unreliable gate, linear Boolean function.
@article{MZM_2024_115_1_a6,
     author = {K. A. Popkov},
     title = {Implementation of {Linear} {Boolean} {Functions} by {Self-Correcting} {Circuits} of {Unreliable} {Logic} {Gates}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {91--107},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a6/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Implementation of Linear Boolean Functions by Self-Correcting Circuits of Unreliable Logic Gates
JO  - Matematičeskie zametki
PY  - 2024
SP  - 91
EP  - 107
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a6/
LA  - ru
ID  - MZM_2024_115_1_a6
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Implementation of Linear Boolean Functions by Self-Correcting Circuits of Unreliable Logic Gates
%J Matematičeskie zametki
%D 2024
%P 91-107
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a6/
%G ru
%F MZM_2024_115_1_a6
K. A. Popkov. Implementation of Linear Boolean Functions by Self-Correcting Circuits of Unreliable Logic Gates. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 91-107. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a6/

[1] N. P. Redkin, Nadezhnost i diagnostika skhem, Izd-vo MGU, M., 1992

[2] G. I. Kirienko, “O samokorrektiruyuschikhsya skhemakh iz funktsionalnykh elementov”, Probl. kibernetiki, 12 (1964), 29–37 | MR

[3] G. I. Kirienko, “Sintez samokorrektiruyuschikhsya skhem iz funktsionalnykh elementov dlya sluchaya rastuschego chisla oshibok v skheme”, Diskret. analiz, 16 (1970), 38–43 | MR

[4] D. Ulig, “O sinteze samokorrektiruyuschikhsya skhem iz funktsionalnykh elementov s malym chislom nadezhnykh zlementov”, Matem. zametki, 15:6 (1974), 937–944 | MR | Zbl

[5] N. I. Turdaliev, “O samokorrektirovanii skhem dlya nekotorykh posledovatelnostei bulevykh funktsii”, Diskret. matem., 1:3 (1989), 77–86 | MR | Zbl

[6] N. I. Turdaliev, “O samokorrektiruyuschikhsya skhemakh iz funktsionalnykh elementov dlya lineinoi funktsii”, Diskret. matem., 2:2 (1990), 150–154 | MR | Zbl

[7] N. P. Redkin, “Ob asimptoticheski minimalnykh samokorrektiruyuschikhsya skhemakh dlya odnoi posledovatelnosti bulevykh funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekh., 1996, no. 3, 3–9 | MR

[8] N. P. Redkin, “Asimptoticheski minimalnye samokorrektiruyuschiesya skhemy dlya odnoi posledovatelnosti bulevykh funktsii”, Diskretn. analiz i issled. oper., 3:2 (1996), 62–79 | MR | Zbl

[9] A. V. Chashkin, “Samokorrektiruyuschiesya skhemy dlya funktsii polinomialnogo vesa”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekh., 1997, no. 5, 64–66 | MR

[10] V. M. Krasnov, “O slozhnosti samokorrektiruyuschikhsya skhem dlya odnoi posledovatelnosti bulevykh funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2009, no. 5, 55–57 | MR | Zbl

[11] K. A. Popkov, “On self-correcting logic circuits of unreliable gates”, Lobachevskii J. Math., 42:11 (2021), 2637–2644 | DOI | MR

[12] K. A. Popkov, “O samokorrektiruyuschikhsya skhemakh iz nenadezhnykh funktsionalnykh elementov, imeyuschikh ne bolee dvukh vkhodov”, Matem. zametki, 111:1 (2022), 145–148 | DOI | MR

[13] N. P. Redkin, “K voprosu o dline diagnosticheskikh testov dlya skhem”, Matem. zametki, 102:4 (2017), 624–627 | DOI | MR

[14] Y. Liu, Design for Test Methods to Reduce Test Set Size, PhD (Doctor of Philosophy) thesis, Univ. of Iowa, Iowa City, 2018

[15] A. I. Timoshkin, “Testable logical circuit of a binary array multiplier in nonstandard basis”, Austrian Journ. of Techn. and Natural Sci., 2018, no. 11–12, 46–49

[16] D. S. Romanov, Ob otsenkakh dlin minimalnykh testov dlya logicheskikh skhem, Dis. $\dots$ dokt. fiz.-matem. nauk, M., 2019

[17] Yu. V. Borodina, “Legkotestiruemye skhemy v bazise Zhegalkina pri konstantnykh neispravnostyakh tipa “1” na vykhodakh elementov”, Diskret. matem., 31:2 (2019), 14–19 | DOI | MR

[18] G. G. Temerbekova, D. S. Romanov, “O edinichnykh proveryayuschikh testakh otnositelno zamen elementov na invertory”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 162, no. 3, Izd-vo Kazanskogo un-ta, Kazan, 2020, 359–366 | DOI | MR

[19] K. A. Popkov, O vozmozhnostyakh postroeniya legkotestiruemykh kontaktnykh skhem i skhem iz funktsionalnykh elementov, Dis. $\dots$ dokt. fiz.-matem. nauk, M., 2021

[20] I. G. Lyubich, D. S. Romanov, “O edinichnykh diagnosticheskikh testakh otnositelno inversnykh neispravnostei elementov v skhemakh nad proizvolnymi bazisami”, Diskret. matem., 33:1 (2021), 20–30 | DOI | MR

[21] Yu. V. Borodina, “Nekotorye klassy legkotestiruemykh skhem v bazise Zhegalkina”, Diskret. matem., 33:4 (2021), 3–10 | DOI

[22] K. A. Popkov, “Korotkie edinichnye proveryayuschie testy dlya skhem pri proizvolnykh neispravnostyakh funktsionalnykh elementov”, PDM, 2022, no. 55, 59–76 | DOI | MR

[23] K. A. Popkov, “Korotkie polnye diagnosticheskie testy dlya skhem s dvumya dopolnitelnymi vkhodami v odnom bazise”, Diskret. matem., 34:2 (2022), 67–82 | DOI

[24] K. A. Popkov, “Korotkie polnye diagnosticheskie testy dlya skhem, realizuyuschikh lineinye bulevy funktsii”, Matem. zametki, 113:1 (2023), 75–89 | DOI | MR

[25] S. V. Yablonskii, Vvedenie v diskretnuyu matematiku, Nauka, M., 1986 | MR

[26] N. P. Redkin, Diskretnaya matematika, Fizmatlit, M., 2009