Comparison of Purely Greedy and Orthogonal Greedy Algorithm
Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 43-50
Cet article a éte moissonné depuis la source Math-Net.Ru
Conditions for a dictionary in a Hilbert space are obtained that are necessary or sufficient for the coincidence of purely greedy and orthogonal greedy algorithms with respect to this dictionary.
Keywords:
greedy approximation, $m$-term approximation, Hilbert space, coherence parameter.
@article{MZM_2024_115_1_a3,
author = {K. S. Vishnevetskiy},
title = {Comparison of {Purely} {Greedy} and {Orthogonal} {Greedy} {Algorithm}},
journal = {Matemati\v{c}eskie zametki},
pages = {43--50},
year = {2024},
volume = {115},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a3/}
}
K. S. Vishnevetskiy. Comparison of Purely Greedy and Orthogonal Greedy Algorithm. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 43-50. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a3/
[1] V. Temlyakov, Greedy Approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011 | MR
[2] V. N. Temlyakov, “Relaxation in greedy approximation”, Constr. Approx., 28:1 (2008), 1–25 | DOI | MR
[3] K. S. Vishnevetskii, “O sovpadenii chisto zhadnykh i nailuchshikh $m$-chlennykh priblizhenii”, Matem. zametki, 111:2 (2022), 202–210 | DOI | MR