Comparison of Purely Greedy and Orthogonal Greedy Algorithm
Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 43-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions for a dictionary in a Hilbert space are obtained that are necessary or sufficient for the coincidence of purely greedy and orthogonal greedy algorithms with respect to this dictionary.
Keywords: greedy approximation, $m$-term approximation, Hilbert space, coherence parameter.
@article{MZM_2024_115_1_a3,
     author = {K. S. Vishnevetskiy},
     title = {Comparison of {Purely} {Greedy} and {Orthogonal} {Greedy} {Algorithm}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {43--50},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a3/}
}
TY  - JOUR
AU  - K. S. Vishnevetskiy
TI  - Comparison of Purely Greedy and Orthogonal Greedy Algorithm
JO  - Matematičeskie zametki
PY  - 2024
SP  - 43
EP  - 50
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a3/
LA  - ru
ID  - MZM_2024_115_1_a3
ER  - 
%0 Journal Article
%A K. S. Vishnevetskiy
%T Comparison of Purely Greedy and Orthogonal Greedy Algorithm
%J Matematičeskie zametki
%D 2024
%P 43-50
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a3/
%G ru
%F MZM_2024_115_1_a3
K. S. Vishnevetskiy. Comparison of Purely Greedy and Orthogonal Greedy Algorithm. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 43-50. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a3/

[1] V. Temlyakov, Greedy Approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011 | MR

[2] V. N. Temlyakov, “Relaxation in greedy approximation”, Constr. Approx., 28:1 (2008), 1–25 | DOI | MR

[3] K. S. Vishnevetskii, “O sovpadenii chisto zhadnykh i nailuchshikh $m$-chlennykh priblizhenii”, Matem. zametki, 111:2 (2022), 202–210 | DOI | MR