On Solutions of the One-Dimensional Goldshtik Problem
Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 14-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-dimensional analog of the mathematical model of separated flows of an incompressible Goldshtik fluid is considered. The model is a boundary value problem for a second-order ordinary differential equation with discontinuous right-hand side. Some properties of the solutions of the problem, as well as the properties of the energy functional for different values of vorticity, are established. An approximate solution of the boundary value problem under study is found using the shooting method.
Keywords: Goldshtik model, one-dimensional problem, discontinuous right-hand side, properties of solutions, shooting method.
@article{MZM_2024_115_1_a1,
     author = {O. V. Baskov and D. K. Potapov},
     title = {On {Solutions} of the {One-Dimensional} {Goldshtik} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {14--23},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a1/}
}
TY  - JOUR
AU  - O. V. Baskov
AU  - D. K. Potapov
TI  - On Solutions of the One-Dimensional Goldshtik Problem
JO  - Matematičeskie zametki
PY  - 2024
SP  - 14
EP  - 23
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a1/
LA  - ru
ID  - MZM_2024_115_1_a1
ER  - 
%0 Journal Article
%A O. V. Baskov
%A D. K. Potapov
%T On Solutions of the One-Dimensional Goldshtik Problem
%J Matematičeskie zametki
%D 2024
%P 14-23
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a1/
%G ru
%F MZM_2024_115_1_a1
O. V. Baskov; D. K. Potapov. On Solutions of the One-Dimensional Goldshtik Problem. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 14-23. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a1/

[1] A. F. Filippov, Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR

[2] N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, N. V. Skripnik, Impulsnye differentsialnye uravneniya s mnogoznachnoi i razryvnoi pravoi chastyu, In-t matem. NAN Ukrainy, Kiev, 2007 | MR

[3] A. A. Andronov, A. A. Vitt, S. E. Khaikin, Teoriya kolebanii, Fizmatgiz, M., 1959 | MR

[4] M. Kunze, Non-smooth Dynamical Systems, Lecture Notes in Math., 1744, Springer, Berlin, 2000 | MR

[5] D. K. Potapov, V. V. Yevstafyeva, “Lavrent'ev problem”, Electron. J. Differential Equations, 255 (2013), 1–6 | MR

[6] S. Bensid, J. I. Diaz, “Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions”, Discrete Contin. Dyn. Syst. Ser. B, 22:5 (2017), 1757–1778 | MR

[7] I. L. Nizhnik, A. A. Krasneeva, “Periodicheskie resheniya differentsialnykh uravnenii vtorogo poryadka s razryvnoi nelineinostyu”, Nelin. koleb., 15:3 (2012), 381–389 | MR

[8] A. Jacquemard, M. A. Teixeira, “Periodic solutions of a class of non-autonomous second order differential equations with discontinuous right-hand side”, Phys. D, 241:22 (2012), 2003–2009 | DOI | MR

[9] D. K. Potapov, “Zadacha Shturma–Liuvillya s razryvnoi nelineinostyu”, Differents. uravneniya, 50:9 (2014), 1284–1286 | DOI | MR

[10] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Solution to second-order differential equations with discontinuous right-hand side”, Electron. J. Differential Equations, 221 (2014), 1–6 | MR

[11] J. Llibre, M. A. Teixeira, “Periodic solutions of discontinuous second order differential systems”, J. Singul., 10 (2014), 183–190 | MR

[12] D. K. Potapov, “Suschestvovanie reshenii, otsenki differentsialnogo operatora i “razdelyayuschee” mnozhestvo v kraevoi zadache dlya differentsialnogo uravneniya vtorogo poryadka s razryvnoi nelineinostyu”, Differents. uravneniya, 51:7 (2015), 970–974 | DOI | MR

[13] A. M. Samoilenko, I. L. Nizhnik, “Differentsialnye uravneniya s biustoichivoi nelineinostyu”, Ukr. matem. zhurn., 67:4 (2015), 517–554 | MR

[14] G. Bonanno, G. D'Agui, P. Winkert, “Sturm–Liouville equations involving discontinuous nonlinearities”, Minimax Theory Appl., 1:1 (2016), 125–143 | MR

[15] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Non-existence of periodic solutions to non-autonomous second-order differential equation with discontinuous nonlinearity”, Electron. J. Differential Equations, 4 (2016), 1–8 | MR

[16] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of solutions for second-order differential equations with discontinuous right-hand side”, Electron. J. Differential Equations, 124 (2016), 1–9 | MR

[17] C. E. L. da Silva, P. R. da Silva, A. Jacquemard, “Sliding solutions of second-order differential equations with discontinuous right-hand side”, Math. Methods Appl. Sci., 40:14 (2017), 5295–5306 | DOI | MR

[18] V. N. Pavlenko, E. Yu. Postnikova, “Zadacha Shturma–Liuvillya dlya uravneniya s razryvnoi nelineinostyu”, Chelyab. fiz.-matem. zhurn., 4:2 (2019), 142–154 | DOI | MR

[19] C. E. L. da Silva, A. Jacquemard, M. A. Teixeira, “Periodic solutions of a class of non-autonomous discontinuous second-order differential equations”, J. Dyn. Control Syst., 26:1 (2020), 17–44 | DOI | MR

[20] M. A. Goldshtik, “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Dokl. AN SSSR, 147:6 (1962), 1310–1313

[21] D. K. Potapov, “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Izv. RAEN. Ser. MMMIU, 8:3–4 (2004), 163–170

[22] D. K. Potapov, “Nepreryvnaya approksimatsiya odnomernogo analoga modeli Goldshtika otryvnykh techenii neszhimaemoi zhidkosti”, Sib. zhurn. vychisl. matem., 14:3 (2011), 291–296 | MR

[23] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978 | MR

[24] D. K. Potapov, “O resheniyakh zadachi Goldshtika”, Sib. zhurn. vychisl. matem., 15:4 (2012), 409–415 | MR

[25] D. K. Potapov, “Nepreryvnye approksimatsii zadachi Goldshtika”, Matem. zametki, 87:2 (2010), 262–266 | DOI | MR | Zbl