On Solutions of the One-Dimensional Goldshtik Problem
Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 14-23

Voir la notice de l'article provenant de la source Math-Net.Ru

A one-dimensional analog of the mathematical model of separated flows of an incompressible Goldshtik fluid is considered. The model is a boundary value problem for a second-order ordinary differential equation with discontinuous right-hand side. Some properties of the solutions of the problem, as well as the properties of the energy functional for different values of vorticity, are established. An approximate solution of the boundary value problem under study is found using the shooting method.
Keywords: Goldshtik model, one-dimensional problem, discontinuous right-hand side, properties of solutions, shooting method.
@article{MZM_2024_115_1_a1,
     author = {O. V. Baskov and D. K. Potapov},
     title = {On {Solutions} of the {One-Dimensional} {Goldshtik} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {14--23},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a1/}
}
TY  - JOUR
AU  - O. V. Baskov
AU  - D. K. Potapov
TI  - On Solutions of the One-Dimensional Goldshtik Problem
JO  - Matematičeskie zametki
PY  - 2024
SP  - 14
EP  - 23
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a1/
LA  - ru
ID  - MZM_2024_115_1_a1
ER  - 
%0 Journal Article
%A O. V. Baskov
%A D. K. Potapov
%T On Solutions of the One-Dimensional Goldshtik Problem
%J Matematičeskie zametki
%D 2024
%P 14-23
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a1/
%G ru
%F MZM_2024_115_1_a1
O. V. Baskov; D. K. Potapov. On Solutions of the One-Dimensional Goldshtik Problem. Matematičeskie zametki, Tome 115 (2024) no. 1, pp. 14-23. http://geodesic.mathdoc.fr/item/MZM_2024_115_1_a1/