Kuhn--Tucker Type Theorems in Cone and Linear Normed Spaces
Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 909-921.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems of Kuhn–Tucker type are considered in semilinear spaces, and also in linear normed spaces for, generally speaking, nonconvex sets.
Keywords: asymmetric space, separation theorem, Kuhn–Tucker theorem, convex functional.
@article{MZM_2023_114_6_a8,
     author = {I. G. Tsar'kov},
     title = {Kuhn--Tucker {Type} {Theorems} in {Cone} and {Linear} {Normed} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {909--921},
     publisher = {mathdoc},
     volume = {114},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a8/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Kuhn--Tucker Type Theorems in Cone and Linear Normed Spaces
JO  - Matematičeskie zametki
PY  - 2023
SP  - 909
EP  - 921
VL  - 114
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a8/
LA  - ru
ID  - MZM_2023_114_6_a8
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Kuhn--Tucker Type Theorems in Cone and Linear Normed Spaces
%J Matematičeskie zametki
%D 2023
%P 909-921
%V 114
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a8/
%G ru
%F MZM_2023_114_6_a8
I. G. Tsar'kov. Kuhn--Tucker Type Theorems in Cone and Linear Normed Spaces. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 909-921. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a8/

[1] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 | MR

[2] A. Cambini, L. Martein, Generalized Convexity and Optimization. Theory and Applications, Lecture Notes in Econom. and Math. Systems, 616, Springer-Verlag, Berlin, 2008 | MR

[3] K. Keimel, “Locally convex cones and the Schröder–Simpson theorem”, Quaest. Math., 35:3 (2012), 353–390 | DOI | MR

[4] H. König, “Sublineare Funktionale”, Arch. Math. (Basel), 23 (1972), 500–508 | DOI | MR

[5] H. König, “Sublinear functionals and conical measures”, Arch. Math. (Basel), 77:1 (2001), 56–64 | DOI | MR

[6] S. Cobzaş, Functional Analysis in Asymmetric Normed Spaces, Front. Math., Birkhauser, Basel, 2013 | DOI | MR | Zbl

[7] S. Cobzaş, “Separation of convex sets and best approximation in spaces with asymmetric norm”, Quaest. Math., 27:3 (2004), 275–296 | DOI | MR

[8] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl

[9] A. R. Alimov, I. G. Tsar'kov, Geometric Approximation Theory, Springer Monogr. Math., Springer, Cham, 2022 | MR

[10] A. R. Alimov, I. G. Tsarkov, “Klassicheskie voprosy drobno-ratsionalnogo priblizheniya”, Dokl. RAN. Matem., inform., prots. upr., 506 (2022), 5–8 | DOI

[11] I. G. Tsarkov, “Properties of Chebyshev generalized rational fractions in $L_1$”, Russ. J. Math. Phys., 29:4 (2022), 583–587 | DOI | MR

[12] A. R. Alimov, I. G. Tsar'kov, “Solarity and proximinality in generalized rational approximation in spaces $C(Q)$ and $L_p$”, Russ. J. Math. Phys., 29:3 (2022), 291–305 | DOI | MR