Integration of the Modified Korteweg--de Vries--Liouville Equation in the Class of Periodic Infinite-Gap Functions
Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 894-908.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the inverse spectral problem method is used to integrate the nonlinear mKdV–L equation in the class of periodic infinite-gap functions. The solvability of the Cauchy problem for an infinite system of Dubrovin differential equations in the class of $6$ times continuously differentiable periodic infinite-gap functions is proved. It is shown that the sum of a uniformly convergent function series constructed by solving the system of Dubrovin equations and by using the first trace formula satisfies the mKdV–L equations. Moreover, we prove that if the initial function is a real-valued $\pi$-periodic analytic function, then the solution of the Cauchy problem for the mKdV–L equation is a real-valued analytic function in the variable $x$ as well; and if the number $\frac{\pi}{2}$ is a period (respectively, antiperiod) of the initial function, then the number $\frac{\pi}{2}$ is the period (respectively, antiperiod) in the variable $x$ of the solution of the Cauchy problem for the mKdV–L equations.
Keywords: modified Korteweg–de Vries–Liouville (mKdV–L) equation, Dirac operator, spectral data, trace formulas.
Mots-clés : Dubrovin equations
@article{MZM_2023_114_6_a7,
     author = {A. B. Khasanov and U. O. Xudayorov},
     title = {Integration of the {Modified} {Korteweg--de} {Vries--Liouville} {Equation} in the {Class} of {Periodic} {Infinite-Gap} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {894--908},
     publisher = {mathdoc},
     volume = {114},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a7/}
}
TY  - JOUR
AU  - A. B. Khasanov
AU  - U. O. Xudayorov
TI  - Integration of the Modified Korteweg--de Vries--Liouville Equation in the Class of Periodic Infinite-Gap Functions
JO  - Matematičeskie zametki
PY  - 2023
SP  - 894
EP  - 908
VL  - 114
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a7/
LA  - ru
ID  - MZM_2023_114_6_a7
ER  - 
%0 Journal Article
%A A. B. Khasanov
%A U. O. Xudayorov
%T Integration of the Modified Korteweg--de Vries--Liouville Equation in the Class of Periodic Infinite-Gap Functions
%J Matematičeskie zametki
%D 2023
%P 894-908
%V 114
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a7/
%G ru
%F MZM_2023_114_6_a7
A. B. Khasanov; U. O. Xudayorov. Integration of the Modified Korteweg--de Vries--Liouville Equation in the Class of Periodic Infinite-Gap Functions. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 894-908. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a7/

[1] M. Wadati, “The exact solution of the modified Korteweg–de Vries equation”, J. Phys. Soc. Jpn., 32 (1972), 1681 | DOI

[2] A. B. Khasanov, U. A. Hoitmetov, “On integration of the loaded mKdV equation in the class of rapidly decreasing functions”, Izv. Irkutsk. Gos. Univ. Ser. Mat., 38 (2021), 19–35 | DOI | MR

[3] A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, Kharaktericheskie koltsa Li i nelineinye integriruemye uravneniya, M.– Izhevsk, 2012

[4] A. V. Zhiber, N. Kh. Ibragimov, A. B. Shabat, “Uravneniya tipa Liuvillya”, Dokl. AN SSSR, 249:1 (1979), 26–29 | MR | Zbl

[5] A. R. Its, “Obraschenie giperellipticheskikh integralov i integrirovanie nelineinykh differentsialnykh uravnenii”, Vestn. Leningr. un-ta. Cer. Matem. Mekhan. Astron., 2:7 (1976), 39–46 | MR

[6] A. O. Smirnov, “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega–de Friza”, Matem. sb., 185:8 (1994), 103–114 | MR | Zbl

[7] V. B. Matveev, A. O. Smirnov, “Resheniya tipa “voln-ubiits” uravnenii ierarkhii Ablovitsa–Kaupa–Nyuella–Sigura: edinyi podkhod”, TMF, 186:2 (2016), 191–220 | DOI | MR

[8] V. B. Matveev, A. O. Smirnov, “Dvukhfaznye periodicheskie resheniya uravnenii iz AKNS ierarkhii”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 25, K 70-letiyu M. A. Semenova-Tyan-Shanskogo, Zap. nauchn. sem. POMI, 473, POMI, SPb., 2018, 205–227

[9] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[10] Yu. A. Mitropolskii, N. N. Bogolyubov (ml.), A. K. Prikarpatskii, V. G. Samoilenko, Integriruemye dinamicheskie sistemy: spektralnye i differentsialno-geometricheskie aspekty, Naukova dumka, Kiev, 1987 | MR

[11] V. B. Matveev, “30 years of finite-gap integration theory”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366:1867 (2008), 837–875 | DOI | MR

[12] B. A. Babazhanov, A. B. Khasanov, “Integrirovanie uravneniya tipa periodicheskoi tsepochki Tody”, Ufimsk. matem. zhurn., 9:2 (2017), 17–24 | DOI | MR

[13] A. B. Khasanov, A. B. Yakhshimuratov, “Inverse problem on the half-line for the Sturm–Liouville operator with periodic potential”, Differ. Equ., 51:1 (2015), 23–32 | DOI | MR

[14] A. B. Khasanov, T. Z. Allanazarova, “On the modified Korteweg–de-Vries equation with loaded term”, Ukrainian Math. J., 73:11 (2022), 1783–1809 | DOI | MR

[15] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956 | MR

[16] P. B. Dzhakov, B. S. Mityagin, “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, UMN, 61:4 (370) (2006), 77–182 | DOI | MR | Zbl

[17] A. B. Khasanov, M. M. Khasanov, “Integrirovanie nelineinogo uravneniya Shredingera s dopolnitelnym chlenom v klasse periodicheskikh funktsii”, TMF, 199:1 (2019), 60–68 | DOI | MR

[18] A. B. Khasanov, M. M. Matyakubov, “Integrirovanie nelineinogo uravneniya Kortevega–de Friza s dopolnitelnym chlenom”, TMF, 203:2 (2020), 192–204 | DOI | MR

[19] A. B. Khasanov, T. G. Khasanov, “Zadacha Koshi dlya uravneniya Kortevega–de Friza v klasse periodicheskikh beskonechnozonnykh funktsii”, Matematicheskie voprosy teorii rasprostraneniya voln. 51, Zap. nauchn. sem. POMI, 506, POMI, SPb., 2021, 258–278

[20] A. B. Khasanov, T. G. Khasanov, “Integrirovanie nelineinogo uravneniya Kortevega–de Friza s nagruzhennym chlenom i istochnikom”, Sib. zhurn. industr. matem., 25:2 (2022), 127–142 | DOI | MR

[21] B. A. Babazhanov, A. B. Khasanov, “O periodicheskoi tsepochke Tody s integralnym istochnikom”, TMF, 184:2 (2015), 253–268 | DOI | MR

[22] A. V. Domrin, “Zamechaniya o lokalnom variante metoda obratnoi zadachi rasseyaniya”, Kompleksnyi analiz i prilozheniya, Sbornik statei, Trudy MIAN, 253, Nauka, M., 2006, 46–60 | MR

[23] A. B. Khasanov, A. B. Yakhshimuratov, “Pochti-periodichnost beskonechnozonnykh potentsialov operatora Diraka”, Dokl. RAN, 350:6 (1996), 746–748 | MR | Zbl

[24] G. A. Mannonov, A. B. Khasanov, “Zadacha Koshi dlya nelineinogo uravneniya Khiroty v klasse periodicheskikh beskonechnozonnykh funktsii”, Algebra i analiz, 34:5 (2022), 139–172

[25] U. B. Muminov, A. B. Khasanov, “Integrirovanie defokusiruyuschego nelineinogo uravneniya Shredingera s dopolnitelnymi chlenami”, TMF, 211:1 (2022), 84–104 | DOI | MR

[26] U. B. Muminov, A. B. Khasanov, “Zadacha Koshi dlya defokusiruyuschego nelineinogo uravneniya Shredingera s nagruzhennym chlenom”, Matem. tr., 25:1 (2022), 102–133 | DOI

[27] H. P. McKean, E. Trubowitz, “Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points”, Comm. Pure Appl. Math., 29:2 (1976), 143–226 | DOI | MR

[28] P. D. Lax, “Almost periodic solutions of the KdV equation”, SIAM Rev., 18:3 (1976), 351-375 | MR

[29] B. M. Levitan, “Pochti periodichnost beskonechno-zonnykh potentsialov”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 291–320 | MR | Zbl

[30] A. A. Danielyan, B. M. Levitan, A. B. Khasanov, “Asimptotika $m$-funktsii Veilya–Titchmarsha v sluchae sistemy Diraka”, Matem. zametki, 50:2 (1991), 67–76 | MR | Zbl

[31] T. V. Misyura, “Kharakteristika spektrov periodicheskikh kraevykh zadach, porozhdaemykh operatsiei Diraka”, Teoriya funktsiei, funkts. analiz i ikh pril., 30 (1978), 90–101 | MR

[32] A. B. Khasanov, A. M. Ibragimov, “Ob obratnoi zadache dlya operatora Diraka s periodicheskim potentsialom”, Uzb. matem. zhurn., 3–4 (2001), 48–55 | MR

[33] E. Trubowtz, “The inverse problem for periodic potentials”, Comm. Pure Appl. Math., 30:3 (1977), 321–337 | DOI | MR

[34] A. B. Khasanov, A. B. Yakhshimuratov, “Analog obratnoi teoremy G. Borga dlya operatora Diraka”, Uzb. matem. zhurn., 3 (2000), 40–46 | MR

[35] S. Currie, T. Roth, B. Watson, “Borg's periodicity theorems for first-order self-adjoint systems with complex potentials”, Proc. Edinb. Math. Soc. (2), 60:3 (2017), 615–633 | DOI | MR

[36] D. Battig, B. Grebert, J. C. Guillot, T. Kappeler, “Foliation of phase space for the cubic nonlinear Schrödinger equation”, Compositio Math., 85:2 (1993), 163–199 | MR

[37] B. Grebert, J. C. Guillot, “Gaps of one-dimensional periodic AKNS systems”, Forum Math., 5:5 (1993), 459–504 | DOI | MR

[38] E. Korotayev, “Inverse problem and estimates for periodic Zakharov–Shabat systems”, J. Reine Angew. Math., 583 (2005), 87–115 | DOI | MR

[39] E. Korotayev, D. Mokeev, “Dubrovin equation for periodic Dirac operator on the half-line”, Appl. Anal., 101:1 (2022,), 337–365 | MR

[40] I. V. Stankevich, “Ob odnoi obratnoi zadache spektralnogo analiza dlya uravneniya Khilla”, Dokl. AN SSSR, 192:1 (1970), 34–37 | MR

[41] H. Flashka, “On the inverse problem for Hill's operator”, Arch. Rational Mech. Anal., 59:4 (1975), 293–309 | DOI | MR