Orthogonal Additivity of a Product of Powers of Linear Operators
Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 863-872

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note it is established that a finite family of positive linear operators acting from an Archimedean vector lattice into an Archimedean $f$-algebra with unit is disjointness preserving if and only if the polynomial presented in the form of the product of powers of these operators is orthogonally additive. A similar statement is established for the sum of polynomials represented as products of powers of positive operators.
Mots-clés : polynomial
Keywords: orthogonal additivity, linear functional, vector lattice, disjointness preserving.
@article{MZM_2023_114_6_a5,
     author = {Z. A. Kusraeva and V. A. Tamaeva},
     title = {Orthogonal {Additivity} of a {Product} of {Powers} of {Linear} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {863--872},
     publisher = {mathdoc},
     volume = {114},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a5/}
}
TY  - JOUR
AU  - Z. A. Kusraeva
AU  - V. A. Tamaeva
TI  - Orthogonal Additivity of a Product of Powers of Linear Operators
JO  - Matematičeskie zametki
PY  - 2023
SP  - 863
EP  - 872
VL  - 114
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a5/
LA  - ru
ID  - MZM_2023_114_6_a5
ER  - 
%0 Journal Article
%A Z. A. Kusraeva
%A V. A. Tamaeva
%T Orthogonal Additivity of a Product of Powers of Linear Operators
%J Matematičeskie zametki
%D 2023
%P 863-872
%V 114
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a5/
%G ru
%F MZM_2023_114_6_a5
Z. A. Kusraeva; V. A. Tamaeva. Orthogonal Additivity of a Product of Powers of Linear Operators. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 863-872. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a5/