Orthogonal Additivity of a Product of Powers of Linear Operators
Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 863-872.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note it is established that a finite family of positive linear operators acting from an Archimedean vector lattice into an Archimedean $f$-algebra with unit is disjointness preserving if and only if the polynomial presented in the form of the product of powers of these operators is orthogonally additive. A similar statement is established for the sum of polynomials represented as products of powers of positive operators.
Mots-clés : polynomial
Keywords: orthogonal additivity, linear functional, vector lattice, disjointness preserving.
@article{MZM_2023_114_6_a5,
     author = {Z. A. Kusraeva and V. A. Tamaeva},
     title = {Orthogonal {Additivity} of a {Product} of {Powers} of {Linear} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {863--872},
     publisher = {mathdoc},
     volume = {114},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a5/}
}
TY  - JOUR
AU  - Z. A. Kusraeva
AU  - V. A. Tamaeva
TI  - Orthogonal Additivity of a Product of Powers of Linear Operators
JO  - Matematičeskie zametki
PY  - 2023
SP  - 863
EP  - 872
VL  - 114
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a5/
LA  - ru
ID  - MZM_2023_114_6_a5
ER  - 
%0 Journal Article
%A Z. A. Kusraeva
%A V. A. Tamaeva
%T Orthogonal Additivity of a Product of Powers of Linear Operators
%J Matematičeskie zametki
%D 2023
%P 863-872
%V 114
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a5/
%G ru
%F MZM_2023_114_6_a5
Z. A. Kusraeva; V. A. Tamaeva. Orthogonal Additivity of a Product of Powers of Linear Operators. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 863-872. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a5/

[1] B. Grecu, R. Ryan, “Polynomials on Banach spaces with unconditional bases”, Proc. Amer. Math. Soc., 133:4 (2005), 1083–1091 | DOI | MR

[2] K. Sundaresan, “Geometry of spaces of homogeneous polynomials on Banach lattices”, Applied Geometry and Discrete Mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Providence, RI, 1991, 571–586 | MR

[3] Q. Bu, G. Buskes, “Polynomials on Banach lattices and positive tensor products”, J. Math. Anal. Appl., 388:2 (2012), 845–862 | DOI | MR

[4] J. Loane, Polynomials on Riesz Spaces, Thesis, Department of Math. National Univ. of Ireland, Galway, 2007

[5] P. Linares, Orthogonal Additive Polynomials and Applications, Thesis, Departamento de Analisis Matematico, Universidad Complutense de Madrid, 2009

[6] Z. A. Kusraeva, Orthogonally Additive Polynomials on Vector Lattices, Thesis, Sobolev Institute of Mathematics, Siberian Division of the RAS, Novosibirsk, 2013

[7] C. Boyd, R. Ryan, N. Snigireva, “Orthogonally additive sums of powers of linear functionals”, Arch. Math. (Basel), 118:3 (2022), 283–290 | DOI | MR

[8] Z. A. Kusraeva, “Sums of powers of orthogonally additive polynomials”, J. Math. Anal. Appl., 519:2 (2023), 126766 | DOI | MR

[9] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Pure Appl. Math., 119, Academic Press, Orlando, FL, 1985 | MR

[10] S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer Monogr. Math., Springer-Verlag, Berlin, 1999 | MR

[11] K. Boulabiar, “Recent trends on order bounded disjointness preserving operators”, Irish Math. Soc. Bull., 62 (2008), 43–69 | DOI | MR

[12] B. Z. Vulikh, Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatlit, M., 1961 | MR

[13] D. A. Vladimirov, Boolean Algebras in Analysis, Math. Appl., 540, Kluwer, Dordrecht, 2002 | MR