Basic Predicate Calculus is Sound with Respect to a Modified Version of Strictly Primitive Recursive Realizability
Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 827-847.

Voir la notice de l'article provenant de la source Math-Net.Ru

A version of strictly primitive recursive realizability for the language of the basis predicate logic $\mathsf{BQC}$ is defined, which takes into account specific features of the language. It is proved that $\mathsf{BQC}$ is sound with respect to this version of strictly primitive recursive realizability.
Keywords: strictly primitive recursive realizability, basis predicate logic BQC, constructive semantics, realizability.
@article{MZM_2023_114_6_a3,
     author = {A. Yu. Konovalov},
     title = {Basic {Predicate} {Calculus} is {Sound} with {Respect} to a {Modified} {Version} of {Strictly} {Primitive} {Recursive} {Realizability}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {827--847},
     publisher = {mathdoc},
     volume = {114},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a3/}
}
TY  - JOUR
AU  - A. Yu. Konovalov
TI  - Basic Predicate Calculus is Sound with Respect to a Modified Version of Strictly Primitive Recursive Realizability
JO  - Matematičeskie zametki
PY  - 2023
SP  - 827
EP  - 847
VL  - 114
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a3/
LA  - ru
ID  - MZM_2023_114_6_a3
ER  - 
%0 Journal Article
%A A. Yu. Konovalov
%T Basic Predicate Calculus is Sound with Respect to a Modified Version of Strictly Primitive Recursive Realizability
%J Matematičeskie zametki
%D 2023
%P 827-847
%V 114
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a3/
%G ru
%F MZM_2023_114_6_a3
A. Yu. Konovalov. Basic Predicate Calculus is Sound with Respect to a Modified Version of Strictly Primitive Recursive Realizability. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 827-847. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a3/

[1] S. C. Kleene, “On the interpretation of intuitionistic number theory”, J. Symbolic Logic, 10:4 (1945), 109–124 | DOI | MR

[2] Z. Damnjanovic, “Strictly primitive recursive realizability. I”, J. Symbolic Logic, 59:4 (1994), 1210–1227 | DOI | MR

[3] S. Salehi, “Provably total functions of basic arithmetic”, MLQ Math. Log. Q., 49:3 (2003), 316–322 | DOI | MR

[4] Pak Ben Kha, Subrekursivnaya realizuemost i logika prekatov, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 2003

[5] V. Plisko, “The nonarithmeticity of the predicate logic of strictly primitive recursive realizability”, Rev. Symb. Log., 15:3 (2022), 693–721 | DOI | MR

[6] V. Plisko, Primitive Recursive Realizability and Basic Propositional Logic, Logic Group Preprint Series, 261, Utrecht University, 2007

[7] A. Visser, “A propositional logic with explicit fixed points”, Studia Logica, 40:2 (1981), 155–175 | DOI | MR

[8] W. Ruitenburg, “Basic predicate calculus”, Notre Dame J. Formal Logic, 39:1 (1998), 18–46 | DOI | MR

[9] A. Yu. Konovalov, “Nekorrektnost bazisnoi logiki predikatov otnositelno silnogo varianta strogoi primitivno-rekursivnoi realizuemosti”, Matem. zametki, 111:2 (2022), 241–257 | DOI

[10] A. Grzegorczyk, “Some classes of recursive functions”, Rozprawy Mat., 4 (1953), 1–46 | MR

[11] P. Axt, “Enumeration and the Grzegorczyk hierarchy”, Z. Math. Logik Grundlagen Math., 9 (1963), 53–65 | DOI | MR

[12] A. Yu. Konovalov, “$\Lambda$-Vyrazheniya dlya primitivno-rekursivnykh funktsii v ierarkhii Gzhegorchika”, Intellektualnye sistemy. Teoriya i prilozheniya, 25:1 (2021), 107–125

[13] S. K. Klini, Vvedenie v metamatematiku, IL, M., 1957 | MR

[14] A. Yu. Konovalov, “A generalized realizability and intuitionistic logic”, ACM Trans. Comput. Log., 24:2 (2022), 11 | MR

[15] A. Yu. Konovalov, “Generalized realizability and basic logic”, ACM Trans. Comput. Log., 22:4 (2021), 25 | DOI | MR

[16] A. Yu. Konovalov, “Obscherekursivnaya realizuemost i intuitsionistskaya logika”, Algebra i logika, 60:2 (2021), 137–144 | DOI

[17] A. Yu. Konovalov, “Obscherekursivnaya realizuemost i bazisnaya logika”, Algebra i logika, 59:5 (2020), 542–566 | DOI

[18] A. Yu. Konovalov, “Korrektnost bazisnoi logiki otnositelno absolyutnoi $L$-realizuemosti”, Intellektualnye sistemy. Teoriya i prilozheniya, 25:2 (2021), 49–54

[19] A. Yu. Konovalov, “Absolyutnaya $L$-realizuemost i intuitsionistskaya logika”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2019, no. 2, 50–53 | MR | Zbl

[20] A. Yu. Konovalov, “Arifmeticheskaya realizuemost i bazisnaya logika”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2016, no. 1, 52–56 | MR

[21] A. Yu. Konovalov, V. E. Plisko, “O giperarifmeticheskoi realizuemosti”, Matem. zametki, 98:5 (2015), 725–746 | DOI | MR