Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_6_a3, author = {A. Yu. Konovalov}, title = {Basic {Predicate} {Calculus} is {Sound} with {Respect} to a {Modified} {Version} of {Strictly} {Primitive} {Recursive} {Realizability}}, journal = {Matemati\v{c}eskie zametki}, pages = {827--847}, publisher = {mathdoc}, volume = {114}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a3/} }
TY - JOUR AU - A. Yu. Konovalov TI - Basic Predicate Calculus is Sound with Respect to a Modified Version of Strictly Primitive Recursive Realizability JO - Matematičeskie zametki PY - 2023 SP - 827 EP - 847 VL - 114 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a3/ LA - ru ID - MZM_2023_114_6_a3 ER -
%0 Journal Article %A A. Yu. Konovalov %T Basic Predicate Calculus is Sound with Respect to a Modified Version of Strictly Primitive Recursive Realizability %J Matematičeskie zametki %D 2023 %P 827-847 %V 114 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a3/ %G ru %F MZM_2023_114_6_a3
A. Yu. Konovalov. Basic Predicate Calculus is Sound with Respect to a Modified Version of Strictly Primitive Recursive Realizability. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 827-847. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a3/
[1] S. C. Kleene, “On the interpretation of intuitionistic number theory”, J. Symbolic Logic, 10:4 (1945), 109–124 | DOI | MR
[2] Z. Damnjanovic, “Strictly primitive recursive realizability. I”, J. Symbolic Logic, 59:4 (1994), 1210–1227 | DOI | MR
[3] S. Salehi, “Provably total functions of basic arithmetic”, MLQ Math. Log. Q., 49:3 (2003), 316–322 | DOI | MR
[4] Pak Ben Kha, Subrekursivnaya realizuemost i logika prekatov, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 2003
[5] V. Plisko, “The nonarithmeticity of the predicate logic of strictly primitive recursive realizability”, Rev. Symb. Log., 15:3 (2022), 693–721 | DOI | MR
[6] V. Plisko, Primitive Recursive Realizability and Basic Propositional Logic, Logic Group Preprint Series, 261, Utrecht University, 2007
[7] A. Visser, “A propositional logic with explicit fixed points”, Studia Logica, 40:2 (1981), 155–175 | DOI | MR
[8] W. Ruitenburg, “Basic predicate calculus”, Notre Dame J. Formal Logic, 39:1 (1998), 18–46 | DOI | MR
[9] A. Yu. Konovalov, “Nekorrektnost bazisnoi logiki predikatov otnositelno silnogo varianta strogoi primitivno-rekursivnoi realizuemosti”, Matem. zametki, 111:2 (2022), 241–257 | DOI
[10] A. Grzegorczyk, “Some classes of recursive functions”, Rozprawy Mat., 4 (1953), 1–46 | MR
[11] P. Axt, “Enumeration and the Grzegorczyk hierarchy”, Z. Math. Logik Grundlagen Math., 9 (1963), 53–65 | DOI | MR
[12] A. Yu. Konovalov, “$\Lambda$-Vyrazheniya dlya primitivno-rekursivnykh funktsii v ierarkhii Gzhegorchika”, Intellektualnye sistemy. Teoriya i prilozheniya, 25:1 (2021), 107–125
[13] S. K. Klini, Vvedenie v metamatematiku, IL, M., 1957 | MR
[14] A. Yu. Konovalov, “A generalized realizability and intuitionistic logic”, ACM Trans. Comput. Log., 24:2 (2022), 11 | MR
[15] A. Yu. Konovalov, “Generalized realizability and basic logic”, ACM Trans. Comput. Log., 22:4 (2021), 25 | DOI | MR
[16] A. Yu. Konovalov, “Obscherekursivnaya realizuemost i intuitsionistskaya logika”, Algebra i logika, 60:2 (2021), 137–144 | DOI
[17] A. Yu. Konovalov, “Obscherekursivnaya realizuemost i bazisnaya logika”, Algebra i logika, 59:5 (2020), 542–566 | DOI
[18] A. Yu. Konovalov, “Korrektnost bazisnoi logiki otnositelno absolyutnoi $L$-realizuemosti”, Intellektualnye sistemy. Teoriya i prilozheniya, 25:2 (2021), 49–54
[19] A. Yu. Konovalov, “Absolyutnaya $L$-realizuemost i intuitsionistskaya logika”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2019, no. 2, 50–53 | MR | Zbl
[20] A. Yu. Konovalov, “Arifmeticheskaya realizuemost i bazisnaya logika”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2016, no. 1, 52–56 | MR
[21] A. Yu. Konovalov, V. E. Plisko, “O giperarifmeticheskoi realizuemosti”, Matem. zametki, 98:5 (2015), 725–746 | DOI | MR