To the Problem of a Point Source in an Inhomogeneous Medium
Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 822-826

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the asymptotic behavior with respect to the complex parameter of the fundamental solution for a second-order elliptic operator with smooth compact coefficients obtained by the V. P. Maslov canonical operator method using the results of V. V. Kucherenko. It is shown that the singular part of the asymptotics can be represented as a series in Hankel functions of the first kind. The asymptotics are constructed under the assumption that all trajectories of the corresponding Hamiltonian system go to infinity.
Keywords: Maslov canonical operator, tropical cryptography, second-order elliptic operator, Hamiltonian system, asymptotics of the fundamental solution, Hankel function of the first kind.
@article{MZM_2023_114_6_a2,
     author = {S. T. Gataullin and T. M. Gataullin},
     title = {To the {Problem} of a {Point} {Source} in an {Inhomogeneous} {Medium}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {822--826},
     publisher = {mathdoc},
     volume = {114},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a2/}
}
TY  - JOUR
AU  - S. T. Gataullin
AU  - T. M. Gataullin
TI  - To the Problem of a Point Source in an Inhomogeneous Medium
JO  - Matematičeskie zametki
PY  - 2023
SP  - 822
EP  - 826
VL  - 114
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a2/
LA  - ru
ID  - MZM_2023_114_6_a2
ER  - 
%0 Journal Article
%A S. T. Gataullin
%A T. M. Gataullin
%T To the Problem of a Point Source in an Inhomogeneous Medium
%J Matematičeskie zametki
%D 2023
%P 822-826
%V 114
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a2/
%G ru
%F MZM_2023_114_6_a2
S. T. Gataullin; T. M. Gataullin. To the Problem of a Point Source in an Inhomogeneous Medium. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 822-826. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a2/