To the Problem of a Point Source in an Inhomogeneous Medium
Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 822-826.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the asymptotic behavior with respect to the complex parameter of the fundamental solution for a second-order elliptic operator with smooth compact coefficients obtained by the V. P. Maslov canonical operator method using the results of V. V. Kucherenko. It is shown that the singular part of the asymptotics can be represented as a series in Hankel functions of the first kind. The asymptotics are constructed under the assumption that all trajectories of the corresponding Hamiltonian system go to infinity.
Keywords: Maslov canonical operator, tropical cryptography, second-order elliptic operator, Hamiltonian system, asymptotics of the fundamental solution, Hankel function of the first kind.
@article{MZM_2023_114_6_a2,
     author = {S. T. Gataullin and T. M. Gataullin},
     title = {To the {Problem} of a {Point} {Source} in an {Inhomogeneous} {Medium}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {822--826},
     publisher = {mathdoc},
     volume = {114},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a2/}
}
TY  - JOUR
AU  - S. T. Gataullin
AU  - T. M. Gataullin
TI  - To the Problem of a Point Source in an Inhomogeneous Medium
JO  - Matematičeskie zametki
PY  - 2023
SP  - 822
EP  - 826
VL  - 114
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a2/
LA  - ru
ID  - MZM_2023_114_6_a2
ER  - 
%0 Journal Article
%A S. T. Gataullin
%A T. M. Gataullin
%T To the Problem of a Point Source in an Inhomogeneous Medium
%J Matematičeskie zametki
%D 2023
%P 822-826
%V 114
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a2/
%G ru
%F MZM_2023_114_6_a2
S. T. Gataullin; T. M. Gataullin. To the Problem of a Point Source in an Inhomogeneous Medium. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 822-826. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a2/

[1] M. V. Keldysh, “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 26:4 (160) (1971), 15–41 | MR | Zbl

[2] V. V. Kucherenko, “Kvaziklassicheskaya asimptotika funktsii tochechnogo istochnika dlya statsionarnogo uravneniya Shredingera”, TMF, 1:3 (1969), 384–406 | MR

[3] T. M. Gataullin, “Asimptotika fundamentalnogo resheniya ellipticheskogo uravneniya po kompleksnomu parametru”, Matem. zametki, 21:3 (1977), 377–390 | MR | Zbl

[4] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Moskovskogo universiteta, M., 1965 | MR

[5] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR

[6] V. V. Kucherenko, “Nekotorye svoistva korotkovolnovoi asimptotiki fundamentalnogo resheniya uravneniya $[\Delta+k^2 n^2(x)]u=0$”, Tr. MIEM, 1972, no. 25, 32–55 | MR

[7] V. V. Kucherenko, “Korotkovolnovaya asimptotika funktsii Grina dlya $N$-mernogo volnovogo uravneniya v neodnorodnoi srede”, Zh. vychisl. matem. i matem. fiz., 8:4 (1968), 908–913 | MR | Zbl

[8] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR

[9] V. M. Babich, “The short wave asymptotic form of the solution for the problem of a point source in an inhomogeneous medium”, Comput. Math. Math. Phys., 1965, no. 5, 247–251 | DOI

[10] V. M. Babich, “Zadacha o tochechnom istochnike elektromagnitnykh kolebanii v sluchae neodnorodnoi sredy (vysokochastotnyi anzats i dvoistvennoe emu nestatsionarnoe singulyarnoe reshenie)”, Matematicheskie voprosy teorii rasprostraneniya voln. 48, Posvyaschaetsya pamyati A. P. Kachalova, Zap. nauchn. sem. POMI, 471, POMI, SPb., 2018, 7–14

[11] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rulo, “Lagranzhevy mnogoobraziya i konstruktsiya asimptotik dlya (psevdo)differentsialnykh uravnenii s lokalizovannymi pravymi chastyami”, TMF, 214:1 (2023), 3–29 | DOI | MR

[12] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rulo, “Kanonicheskii operator Maslova na pare lagranzhevykh mnogoobrazii i uravneniya s lokalizovannoi pravoi chastyu”, Dokl. RAN. Matem. fizika, 475:6 (2017), 624–628 | DOI | MR

[13] R. Melrose, G. A. Uhlmann, “Lagrangian intersection and the Cauchy problem”, Comm. Pure Appl. Math., 32:4 (1979), 483–519 | DOI | MR

[14] S. G. Pyatkov, L. V. Neustroeva, “On some asymptotic representations of solutions to elliptic equations and their applications”, Complex Var. Elliptic Equ., 66:6–7 (2021), 964–987 | DOI | MR

[15] E. M. Kartashov, “Novye operatsionnye sootnosheniya dlya matematicheskikh modelei lokalno-neravnovesnogo teploobmena”, Russ. Tech. J., 10:1 (2022), 68–79 | DOI

[16] J. Zhang, X. Kang, Y. Liu, H. Ma, T. Li, Z. Ma, S. Gataullin, “A secure and lightweight multi-party private intersection-sum scheme over a symmetric cryptosystem”, Symmetry, 15:2 (2023) | DOI