Reidemeister Classes, Wreath Products, and Solvability
Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 949-953.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Reidemeister number, twisted conjugacy class, wreath product, irreducible representation.
Mots-clés : solvable group
@article{MZM_2023_114_6_a14,
     author = {E. V. Troitsky},
     title = {Reidemeister {Classes,} {Wreath} {Products,} and {Solvability}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {949--953},
     publisher = {mathdoc},
     volume = {114},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a14/}
}
TY  - JOUR
AU  - E. V. Troitsky
TI  - Reidemeister Classes, Wreath Products, and Solvability
JO  - Matematičeskie zametki
PY  - 2023
SP  - 949
EP  - 953
VL  - 114
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a14/
LA  - ru
ID  - MZM_2023_114_6_a14
ER  - 
%0 Journal Article
%A E. V. Troitsky
%T Reidemeister Classes, Wreath Products, and Solvability
%J Matematičeskie zametki
%D 2023
%P 949-953
%V 114
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a14/
%G ru
%F MZM_2023_114_6_a14
E. V. Troitsky. Reidemeister Classes, Wreath Products, and Solvability. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 949-953. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a14/

[1] A. Fel'shtyn, E. Troitsky, J. Reine Angew. Math., 613 (2007), 193–210 | MR

[2] E. Troitsky, Twisted Conjugacy in Residually Finite Groups of Finite Prüfer rank, arXiv: 2210.00591

[3] A. Fel'shtyn, E. Troitsky, M. Zietek, Russ. J. Math. Phys., 27:2 (2020), 199–211 | DOI | MR

[4] A. Fel'shtyn, Yu. Leonov, E. Troitsky, Geom. Dedicata, 134 (2008), 61–73 | DOI | MR

[5] A. Fel'shtyn, E. Troitsky, J. Group Theory, 18:6 (2015), 1021–1034 | DOI | MR

[6] M. I. Fraiman, E. V. Troitsky, Sib. elektron. matem. izv., 19:2 (2022), 880–888 | DOI | MR

[7] O. Mitra, P. Sankaran, Geom. Dedicata, 216:2 (2022), 21 | DOI | MR

[8] S. Tertooy, Exp. Math., 31:2 (2022), 444–455 | DOI | MR

[9] A. Fel'shtyn, E. Troitsky, Russ. J. Math. Phys., 28:4 (2021), 455–463 | DOI | MR

[10] E. Jabara, J. Algebra, 320:10 (2008), 3671–3679 | DOI | MR

[11] D. Gon{ç}alves, T. Nasybullov, Comm. Algebra, 47:3 (2019), 930–944 | DOI | MR

[12] E. Troitsky, Comm. Algebra, 47:4 (2019), 1731–1741 | DOI | MR

[13] E. V. Troitskii, Matem. zametki, 113:4 (2023), 626–630 | DOI | MR

[14] A. Fel'shtyn, N. Luchnikov, E. Troitsky, Russ. J. Math. Phys., 22:3 (2015), 301–306 | DOI | MR

[15] A. Fel'shtyn, R. Hill, K-Theory, 8:4 (1994), 367–393 | DOI | MR

[16] D. Gon{ç}alves, Topology Appl., 83:3 (1998), 169–186 | DOI | MR

[17] P. Rowley, J. Algebra, 174:2 (1995), 724–727 | DOI | MR

[18] M. J. Curran, Math. Proc. R. Ir. Acad., 108:2 (2008), 205–210 | DOI | MR

[19] D. Gon{ç}alves, P. Wong, Internat. J. Algebra Comput., 16:5 (2006), 875–886 | DOI | MR