Sub-Riemannian Co-Area Formula for Classes of Noncontact Mappings of Carnot Groups
Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 940-944.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : Carnot group
Keywords: co-area coefficient, uniqueness, noncontact mapping, Hausdorff measure.
@article{MZM_2023_114_6_a12,
     author = {M. B. Karmanova},
     title = {Sub-Riemannian {Co-Area} {Formula} for {Classes} of {Noncontact} {Mappings} of {Carnot} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {940--944},
     publisher = {mathdoc},
     volume = {114},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a12/}
}
TY  - JOUR
AU  - M. B. Karmanova
TI  - Sub-Riemannian Co-Area Formula for Classes of Noncontact Mappings of Carnot Groups
JO  - Matematičeskie zametki
PY  - 2023
SP  - 940
EP  - 944
VL  - 114
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a12/
LA  - ru
ID  - MZM_2023_114_6_a12
ER  - 
%0 Journal Article
%A M. B. Karmanova
%T Sub-Riemannian Co-Area Formula for Classes of Noncontact Mappings of Carnot Groups
%J Matematičeskie zametki
%D 2023
%P 940-944
%V 114
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a12/
%G ru
%F MZM_2023_114_6_a12
M. B. Karmanova. Sub-Riemannian Co-Area Formula for Classes of Noncontact Mappings of Carnot Groups. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 940-944. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a12/

[1] M. B. Karmanova, Matem. zametki, 111:1 (2022), 140–144 | DOI | MR

[2] M. Karmanova, S. Vodopyanov, Acta Appl. Math., 128:1 (2013), 67–111 | DOI | MR

[3] A. Koranyi, H. M. Reimann, Adv. Math., 111:1 (1995), 1–87 | DOI | MR

[4] B. Warhurst, Bull. Austral. Math. Soc., 68:2 (2003), 329–343 | DOI | MR

[5] P. Pansu, Math. Ann., 129:1 (1989), 1–60 | DOI | MR

[6] S. K. Vodopyanov, The Interaction of Analysis and Geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 247–301 | MR

[7] B. Franchi, R. Serapioni, F. Serra Cassano, Math. Ann., 321:3 (2001), 479–531 | DOI | MR

[8] A. Kozhevnikov, Propriétés métriques des ensembles de niveau des applications différentiables sur les groupes de Carnot. Géométrie métrique, Université Paris Sud, Paris XI, 2015

[9] S. Basalaev, Vladikavkaz. Mat. Zh., 25:1 (2023), 5–19 | DOI | MR

[10] M. B. Karmanova, Matem. trudy, 25:2 (2022), 107–125

[11] G. B. Folland, E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, 1982 | MR

[12] S. K. Vodopyanov, A. D. Ukhlov, Matem. tr., 6:2 (2003), 14–65 | MR | Zbl