Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_6_a0, author = {Yu. A. Alpin and N. N. Korneeva}, title = {Ergodicity {Coefficient.} {New} {Proofs} of {Known} {Properties}}, journal = {Matemati\v{c}eskie zametki}, pages = {803--807}, publisher = {mathdoc}, volume = {114}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a0/} }
Yu. A. Alpin; N. N. Korneeva. Ergodicity Coefficient. New Proofs of Known Properties. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 803-807. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a0/
[1] E. Seneta, Non-Negative Matrices and Markov Chains, Springer Ser. Statist., Springer, New-York, 2006 | MR
[2] P. L. Dobrushin, “Tsentralnaya predelnaya teorema dlya neodnorodnykh tsepei Markova. I”, Teoriya veroyatn. i ee primen., 1:1 (1956), 72–89 | MR
[3] E. Seneta, “Markov and the creation of Markov chains”, Markov Anniversary Meeting, 2006, 1–20
[4] A. A. Markov, “Rasprostranenie zakona bolshikh chisel na velichiny, zavisyaschie drug ot druga”, Izv. Fiz.-mat. o-va pri Kazansk. un-te, 2:15 (1906), 135–156
[5] F. R. Gantmakher, Teoriya matrits, Fizmatlit, M., 2004 | MR
[6] I. C. F. Ipsen, T. M. Selee, “Ergodicity coefficients defined by vector norms”, SIAM J. Matrix Anal. Appl., 32:1 (2011), 153–200 | DOI | MR
[7] Yu. A. Alpin, N. Z. Gabbasov, “Zamechanie k zadache lokalizatsii sobstvennykh chisel veschestvennykh matrits”, Izv. vuzov. Matem., 1976, no. 11, 98–100 | MR