Ergodicity Coefficient. New Proofs of Known Properties
Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 803-807.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper suggests new simple proofs of two known theorems on the ergodicity coefficient of a stochastic matrix.
Keywords: stochastic matrix, ergodicity coefficient.
@article{MZM_2023_114_6_a0,
     author = {Yu. A. Alpin and N. N. Korneeva},
     title = {Ergodicity {Coefficient.} {New} {Proofs} of {Known} {Properties}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--807},
     publisher = {mathdoc},
     volume = {114},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a0/}
}
TY  - JOUR
AU  - Yu. A. Alpin
AU  - N. N. Korneeva
TI  - Ergodicity Coefficient. New Proofs of Known Properties
JO  - Matematičeskie zametki
PY  - 2023
SP  - 803
EP  - 807
VL  - 114
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a0/
LA  - ru
ID  - MZM_2023_114_6_a0
ER  - 
%0 Journal Article
%A Yu. A. Alpin
%A N. N. Korneeva
%T Ergodicity Coefficient. New Proofs of Known Properties
%J Matematičeskie zametki
%D 2023
%P 803-807
%V 114
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a0/
%G ru
%F MZM_2023_114_6_a0
Yu. A. Alpin; N. N. Korneeva. Ergodicity Coefficient. New Proofs of Known Properties. Matematičeskie zametki, Tome 114 (2023) no. 6, pp. 803-807. http://geodesic.mathdoc.fr/item/MZM_2023_114_6_a0/

[1] E. Seneta, Non-Negative Matrices and Markov Chains, Springer Ser. Statist., Springer, New-York, 2006 | MR

[2] P. L. Dobrushin, “Tsentralnaya predelnaya teorema dlya neodnorodnykh tsepei Markova. I”, Teoriya veroyatn. i ee primen., 1:1 (1956), 72–89 | MR

[3] E. Seneta, “Markov and the creation of Markov chains”, Markov Anniversary Meeting, 2006, 1–20

[4] A. A. Markov, “Rasprostranenie zakona bolshikh chisel na velichiny, zavisyaschie drug ot druga”, Izv. Fiz.-mat. o-va pri Kazansk. un-te, 2:15 (1906), 135–156

[5] F. R. Gantmakher, Teoriya matrits, Fizmatlit, M., 2004 | MR

[6] I. C. F. Ipsen, T. M. Selee, “Ergodicity coefficients defined by vector norms”, SIAM J. Matrix Anal. Appl., 32:1 (2011), 153–200 | DOI | MR

[7] Yu. A. Alpin, N. Z. Gabbasov, “Zamechanie k zadache lokalizatsii sobstvennykh chisel veschestvennykh matrits”, Izv. vuzov. Matem., 1976, no. 11, 98–100 | MR