Embedding of Free Nilpotent~(Metabelian) Groups in Partially Commutative Nilpotent (Metabelian) Groups
Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 773-779

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm is presented that determines the maximum rank of a free nilpotent metabelian or, respectively, nilpotent group isomorphically embeddable into a given partially commutative nilpotent group of the same degree of nilpotency. It is shown how these embeddings are realized.
Keywords: nilpotent group, metabelian group, partially commutative group, free group, embedding.
@article{MZM_2023_114_5_a9,
     author = {V. A. Roman'kov},
     title = {Embedding of {Free} {Nilpotent~(Metabelian)} {Groups} in {Partially} {Commutative} {Nilpotent} {(Metabelian)} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {773--779},
     publisher = {mathdoc},
     volume = {114},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a9/}
}
TY  - JOUR
AU  - V. A. Roman'kov
TI  - Embedding of Free Nilpotent~(Metabelian) Groups in Partially Commutative Nilpotent (Metabelian) Groups
JO  - Matematičeskie zametki
PY  - 2023
SP  - 773
EP  - 779
VL  - 114
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a9/
LA  - ru
ID  - MZM_2023_114_5_a9
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%T Embedding of Free Nilpotent~(Metabelian) Groups in Partially Commutative Nilpotent (Metabelian) Groups
%J Matematičeskie zametki
%D 2023
%P 773-779
%V 114
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a9/
%G ru
%F MZM_2023_114_5_a9
V. A. Roman'kov. Embedding of Free Nilpotent~(Metabelian) Groups in Partially Commutative Nilpotent (Metabelian) Groups. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 773-779. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a9/