Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_5_a5, author = {A. O. Zavadskii}, title = {On {Lie} {Algebras} {Defined} by {Tangent} {Directions} to {Homogeneous} {Projective} {Varieties}}, journal = {Matemati\v{c}eskie zametki}, pages = {721--738}, publisher = {mathdoc}, volume = {114}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a5/} }
A. O. Zavadskii. On Lie Algebras Defined by Tangent Directions to Homogeneous Projective Varieties. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 721-738. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a5/
[1] J.-M. Hwang, “Geometry of minimal rational curves on Fano manifolds”, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), ICTP Lect. Notes, 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, 335–393 | MR
[2] J.-M. Hwang, N. Mok, “Deformation rigidity of the rational homogeneous space associated to a long simple root”, Ann. Sci. École Norm. Sup. (4), 35:2 (2002), 173–184 | DOI | MR
[3] V. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR
[4] E. B. Vinberg, V. V. Gorbatsevich, A. L. Onischik, “Stroenie grupp i algebr Li”, Gruppy Li i algebry Li – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 41, VINITI, M., 1990, 5–253 | MR | Zbl