Smoothness of Generalized Eigenfunctions of Differential–Difference Operators on a Finite Interval
Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 679-701 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The eigenfunction–eigenvalue problem for differential–difference operators is considered. Necessary and sufficient conditions for preserving the smoothness of generalized eigenfunctions over the entire interval are obtained. An example is given of a differential–difference operator having a countable set of eigenfunctions whose smoothness is violated inside the interval and a countable set of eigenfunctions whose smoothness is preserved.
Keywords: differential–difference equation, generalized eigenfunction, smoothness.
@article{MZM_2023_114_5_a3,
     author = {R. Yu. Vorotnikov and A. L. Skubachevskii},
     title = {Smoothness of {Generalized} {Eigenfunctions} of {Differential{\textendash}Difference} {Operators} on a {Finite} {Interval}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {679--701},
     year = {2023},
     volume = {114},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a3/}
}
TY  - JOUR
AU  - R. Yu. Vorotnikov
AU  - A. L. Skubachevskii
TI  - Smoothness of Generalized Eigenfunctions of Differential–Difference Operators on a Finite Interval
JO  - Matematičeskie zametki
PY  - 2023
SP  - 679
EP  - 701
VL  - 114
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a3/
LA  - ru
ID  - MZM_2023_114_5_a3
ER  - 
%0 Journal Article
%A R. Yu. Vorotnikov
%A A. L. Skubachevskii
%T Smoothness of Generalized Eigenfunctions of Differential–Difference Operators on a Finite Interval
%J Matematičeskie zametki
%D 2023
%P 679-701
%V 114
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a3/
%G ru
%F MZM_2023_114_5_a3
R. Yu. Vorotnikov; A. L. Skubachevskii. Smoothness of Generalized Eigenfunctions of Differential–Difference Operators on a Finite Interval. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 679-701. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a3/

[1] G. A. Kamenskii, A. D. Myshkis, “K postanovke kraevykh zadach dlya differentsialnykh uravnenii s otklonyayuschimsya argumentom i neskolkimi starshimi chlenami”, Differents. uravneniya, 10:3 (1974), 409–418 | MR | Zbl

[2] A. G. Kamenskii, “Kraevye zadachi dlya uravnenii s formalno simmetrichnymi differentsialno-raznostnymi operatorami”, Differents. uravneniya, 12:5 (1976), 815–824 | MR

[3] N. N. Krasovskii, Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968 | MR

[4] Yu. S. Osipov, “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Differents. uravneniya, 1:5 (1965), 605–618 | MR | Zbl

[5] A. V. Kryazhimskii, V. I. Maksimov, Yu. S. Osipov, “O pozitsionnom modelirovanii v dinamicheskikh sistemakh”, Prikl. mat. mekh., 47:6 (1983), 883–890 | MR

[6] G. A. Kamenskii, A. D. Myshkis, A. L. Skubachevskii, “O gladkikh resheniyakh kraevoi zadachi dlya differentsialno-raznostnogo uravneniya neitralnogo tipa”, Ukr. matem. zhurn., 37:5 (1985), 581–585 | MR

[7] A. L. Skubachevskii, Elliptic Functional-Differential Equations and Applications, Oper. Theory Adv. Appl., 91, Birkhäuser, Basel–Boston–Berlin, 1997 | MR

[8] A. L. Skubachevskii, N. O. Ivanov, “Ob obobschennykh resheniyakh vtoroi kraevoi zadachi dlya differentsialno-raznostnykh uravnenii s peremennymi koeffitsientami”, Posvyaschaetsya 70-letiyu prezidenta RUDN V. M. Filippova, SMFN, 67, RUDN, M., 2021, 576–595 | DOI

[9] A. L. Skubachevskii, N. O. Ivanov, “Vtoraya kraevaya zadacha dlya differentsialno-raznostnykh uravnenii”, Dokl. RAN. Matem., inform., prots. upr., 500 (2021), 74–77 | DOI | Zbl

[10] A. L. Skubachevskii, N. O. Ivanov, “Ob obobschennykh resheniyakh vtoroi kraevoi zadachi dlya differentsialno-raznostnykh uravnenii s peremennymi koeffitsientami na intervale netseloi dliny”, Matem. zametki, 111:6 (2022), 873–886 | DOI

[11] D. A. Neverova, A. L. Skubachevskii, “O klassicheskikh i obobschennykh resheniyakh kraevykh zadach dlya differentsialno-raznostnykh uravnenii s peremennymi koeffitsientami”, Matem. zametki, 94:5 (2013), 702–719 | DOI | MR | Zbl

[12] D. A. Neverova, A. L. Skubachevskii, “Klassicheskie resheniya kraevykh zadach dlya differentsialno-raznostnykh uravnenii”, Differents. uravneniya, 49:3 (2013), 300–309 | MR

[13] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[14] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR