Deficiency Indices of Block Jacobi Matrices That Do Not Satisfy the Carleman Condition, and Operators with Point Interactions
Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 789-795.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : Jacobi matrix
Keywords: deficiency indices, Schrödinger and Dirac operators, point interaction.
@article{MZM_2023_114_5_a11,
     author = {V. S. Budyka and M. M. Malamud and I. L. Pokrovski},
     title = {Deficiency {Indices} of {Block} {Jacobi} {Matrices} {That} {Do} {Not} {Satisfy} the {Carleman} {Condition,} and {Operators} with {Point} {Interactions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {789--795},
     publisher = {mathdoc},
     volume = {114},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a11/}
}
TY  - JOUR
AU  - V. S. Budyka
AU  - M. M. Malamud
AU  - I. L. Pokrovski
TI  - Deficiency Indices of Block Jacobi Matrices That Do Not Satisfy the Carleman Condition, and Operators with Point Interactions
JO  - Matematičeskie zametki
PY  - 2023
SP  - 789
EP  - 795
VL  - 114
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a11/
LA  - ru
ID  - MZM_2023_114_5_a11
ER  - 
%0 Journal Article
%A V. S. Budyka
%A M. M. Malamud
%A I. L. Pokrovski
%T Deficiency Indices of Block Jacobi Matrices That Do Not Satisfy the Carleman Condition, and Operators with Point Interactions
%J Matematičeskie zametki
%D 2023
%P 789-795
%V 114
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a11/
%G ru
%F MZM_2023_114_5_a11
V. S. Budyka; M. M. Malamud; I. L. Pokrovski. Deficiency Indices of Block Jacobi Matrices That Do Not Satisfy the Carleman Condition, and Operators with Point Interactions. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 789-795. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a11/

[1] M. G. Krein, DAN SSSR, 69:2 (1949), 125–128 | MR

[2] Yu. M. Dyukarev, Matem. sb., 197:8 (2006), 73–100 | DOI | MR | Zbl

[3] Yu. M. Berezanskii, Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1968 | MR

[4] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazanannye s neyu, GIFML, M., 1961 | MR

[5] A. G. Kostyuchenko, K. A. Mirzoev, Matem. zametki, 63:5 (1998), 709–716 | DOI | MR | Zbl

[6] A. G. Kostyuchenko, K. A. Mirzoev, Funkts. analiz i ego pril., 35:4 (2001), 32–37 | DOI | MR | Zbl

[7] A. S. Kostenko, M. M. Malamud, J. Differential Equations, 249:2 (2010), 253–304 | DOI | MR

[8] R. Carlone, M. Malamud, A. Posilicano, J. Differential Equations, 254:9 (2013), 3835–3902 | DOI | MR

[9] K. A. Mirzoev, T. A. Safonova, “Ob indekse defekta vektornogo operatora Shturma–Liuvillya”, Matem. zametki, 99:2 (2016), 262–277 | DOI | MR

[10] A. S. Kostenko, M. M. Malamud, D. D. Natyagailo, Matem. zametki, 100:1 (2016), 59–77 | DOI | MR

[11] I. N. Broitigam, K. A. Mirzoev, Algebra i analiz, 30:4 (2018), 1–26 | MR

[12] V. S. Budyka, M. M. Malamud, Matem. zametki, 108:3 (2020), 457–462 | DOI | MR

[13] V. S. Budyka, M. M. Malamud, K. A. Mirzoev, Posvyaschaetsya pamyati professora N. D. Kopachevskogo, SMFN, 67, RUDN, M., 2021, 237–254 | DOI | MR

[14] V. S. Budyka, M. M. Malamud, Matem. zametki, 110:6 (2021), 932–938 | DOI | MR

[15] V. S. Budyka, M. M. Malamud, J. Math. Anal. Appl., 506:1 (2022), 125582 | DOI | MR

[16] V. S. Rabinovich, Funkts. analiz i ego pril., 54:2 (2020), 90–94 | DOI | MR

[17] J. Behrndt, M. Holzmann, C. Stelzer, G. Stenzel, Boundary Triples and Weyl Functions for Dirac Operators with Singular Interactions, arXiv: 2211.05191