On~the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds
Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 659-668

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion for the existence of solutions of the problem $$ \Delta_p u=0 \quad\text{in}\quad M \setminus \partial M,\qquad u|_{\partial M}=h $$ with a bounded Dirichlet integral, where $M$ is an oriented complete Riemannian manifold with boundary and $h \in W_{p,\mathrm{loc}}^1 (M)$, $p > 1$.
Keywords: $p$-Laplacian, Dirichlet problem, Riemannian manifold.
@article{MZM_2023_114_5_a1,
     author = {S. M. Bakiev and A. A. Kon'kov},
     title = {On~the {Existence} of {Solutions} of the {Dirichlet} {Problem} for the $p${-Laplacian} on {Riemannian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {659--668},
     publisher = {mathdoc},
     volume = {114},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a1/}
}
TY  - JOUR
AU  - S. M. Bakiev
AU  - A. A. Kon'kov
TI  - On~the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds
JO  - Matematičeskie zametki
PY  - 2023
SP  - 659
EP  - 668
VL  - 114
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a1/
LA  - ru
ID  - MZM_2023_114_5_a1
ER  - 
%0 Journal Article
%A S. M. Bakiev
%A A. A. Kon'kov
%T On~the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds
%J Matematičeskie zametki
%D 2023
%P 659-668
%V 114
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a1/
%G ru
%F MZM_2023_114_5_a1
S. M. Bakiev; A. A. Kon'kov. On~the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 659-668. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a1/