Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_5_a1, author = {S. M. Bakiev and A. A. Kon'kov}, title = {On~the {Existence} of {Solutions} of the {Dirichlet} {Problem} for the $p${-Laplacian} on {Riemannian} {Manifolds}}, journal = {Matemati\v{c}eskie zametki}, pages = {659--668}, publisher = {mathdoc}, volume = {114}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a1/} }
TY - JOUR AU - S. M. Bakiev AU - A. A. Kon'kov TI - On~the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds JO - Matematičeskie zametki PY - 2023 SP - 659 EP - 668 VL - 114 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a1/ LA - ru ID - MZM_2023_114_5_a1 ER -
%0 Journal Article %A S. M. Bakiev %A A. A. Kon'kov %T On~the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds %J Matematičeskie zametki %D 2023 %P 659-668 %V 114 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a1/ %G ru %F MZM_2023_114_5_a1
S. M. Bakiev; A. A. Kon'kov. On~the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 659-668. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a1/
[1] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[2] V. V. Brovkin, A. A. Konkov, “O suschestvovanii reshenii vtoroi kraevoi zadachi dlya $p$-laplasiana na rimanovykh mnogoobraziyakh”, Matem. zametki, 109:2 (2021), 180–195 | DOI | MR
[3] R. R. Gadylshin, G. A. Chechkin, “Kraevaya zadacha dlya laplasiana s bystro menyayuschimsya tipom granichnykh uslovii v mnogomernoi oblasti”, Sib. matem. zhurn., 40:2 (1999), 271–287 | MR | Zbl
[4] A. A. Grigoryan, “O razmernosti prostranstv garmonicheskikh funktsii”, Matem. zametki, 48:5 (1990), 55–61 | MR | Zbl
[5] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR
[6] A. A. Konkov, “O prostranstve reshenii ellipticheskikh uravnenii na rimanovykh mnogoobraziyakh”, Differents. uravneniya, 31:5 (1995), 805–813 | MR
[7] A. A. Konkov, “O razmernosti prostranstva reshenii ellipticheskikh sistem v neogranichennykh oblastyakh”, Matem. sb., 184:12 (1993), 23–52 | MR | Zbl
[8] S. A. Korolkov, A. G. Losev, “Generalized harmonic functions of Riemannian manifolds with ends”, Math. Z., 272:1–2 (2012), 459–472 | DOI | MR
[9] A. G. Losev, E. A. Mazepa, “On solvability of the boundary value problems for harmonic function on noncompact Riemannian manifolds”, Probl. Anal. Issues Anal., 8 (26):3 (2019), 73–82 | DOI | MR
[10] Yu. A. Alkhutov, A. G. Chechkina, “O mnogomernoi zadache Zaremby dlya neodnorodnogo uravneniya $p$-Laplasa”, Dokl. RAN. Matem., inform., prots. upr., 505 (2022), 37–41 | DOI | MR
[11] L. D. Kudryavtsev, “Reshenie pervoi kraevoi zadachi dlya samosopryazhennykh ellipticheskikh uravnenii v sluchae neogranichennoi oblasti”, Izv. AN SSSR. Ser. matem., 31:5 (1967), 1179–1199 | MR | Zbl
[12] V. G. Maz'ya, S. V. Poborchi, “Existence and uniqueness of an energy solution to the Dirichlet problem for the Laplace equation in the exterior of a multi-dimensional paraboloid”, J. Math. Sci. (N.Y.), 172:4 (2011), 532–554 | DOI | MR
[13] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR
[14] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR