On~the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds
Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 659-668.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion for the existence of solutions of the problem $$ \Delta_p u=0 \quad\text{in}\quad M \setminus \partial M,\qquad u|_{\partial M}=h $$ with a bounded Dirichlet integral, where $M$ is an oriented complete Riemannian manifold with boundary and $h \in W_{p,\mathrm{loc}}^1 (M)$, $p > 1$.
Keywords: $p$-Laplacian, Dirichlet problem, Riemannian manifold.
@article{MZM_2023_114_5_a1,
     author = {S. M. Bakiev and A. A. Kon'kov},
     title = {On~the {Existence} of {Solutions} of the {Dirichlet} {Problem} for the $p${-Laplacian} on {Riemannian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {659--668},
     publisher = {mathdoc},
     volume = {114},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a1/}
}
TY  - JOUR
AU  - S. M. Bakiev
AU  - A. A. Kon'kov
TI  - On~the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds
JO  - Matematičeskie zametki
PY  - 2023
SP  - 659
EP  - 668
VL  - 114
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a1/
LA  - ru
ID  - MZM_2023_114_5_a1
ER  - 
%0 Journal Article
%A S. M. Bakiev
%A A. A. Kon'kov
%T On~the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds
%J Matematičeskie zametki
%D 2023
%P 659-668
%V 114
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a1/
%G ru
%F MZM_2023_114_5_a1
S. M. Bakiev; A. A. Kon'kov. On~the Existence of Solutions of the Dirichlet Problem for the $p$-Laplacian on Riemannian Manifolds. Matematičeskie zametki, Tome 114 (2023) no. 5, pp. 659-668. http://geodesic.mathdoc.fr/item/MZM_2023_114_5_a1/

[1] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[2] V. V. Brovkin, A. A. Konkov, “O suschestvovanii reshenii vtoroi kraevoi zadachi dlya $p$-laplasiana na rimanovykh mnogoobraziyakh”, Matem. zametki, 109:2 (2021), 180–195 | DOI | MR

[3] R. R. Gadylshin, G. A. Chechkin, “Kraevaya zadacha dlya laplasiana s bystro menyayuschimsya tipom granichnykh uslovii v mnogomernoi oblasti”, Sib. matem. zhurn., 40:2 (1999), 271–287 | MR | Zbl

[4] A. A. Grigoryan, “O razmernosti prostranstv garmonicheskikh funktsii”, Matem. zametki, 48:5 (1990), 55–61 | MR | Zbl

[5] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR

[6] A. A. Konkov, “O prostranstve reshenii ellipticheskikh uravnenii na rimanovykh mnogoobraziyakh”, Differents. uravneniya, 31:5 (1995), 805–813 | MR

[7] A. A. Konkov, “O razmernosti prostranstva reshenii ellipticheskikh sistem v neogranichennykh oblastyakh”, Matem. sb., 184:12 (1993), 23–52 | MR | Zbl

[8] S. A. Korolkov, A. G. Losev, “Generalized harmonic functions of Riemannian manifolds with ends”, Math. Z., 272:1–2 (2012), 459–472 | DOI | MR

[9] A. G. Losev, E. A. Mazepa, “On solvability of the boundary value problems for harmonic function on noncompact Riemannian manifolds”, Probl. Anal. Issues Anal., 8 (26):3 (2019), 73–82 | DOI | MR

[10] Yu. A. Alkhutov, A. G. Chechkina, “O mnogomernoi zadache Zaremby dlya neodnorodnogo uravneniya $p$-Laplasa”, Dokl. RAN. Matem., inform., prots. upr., 505 (2022), 37–41 | DOI | MR

[11] L. D. Kudryavtsev, “Reshenie pervoi kraevoi zadachi dlya samosopryazhennykh ellipticheskikh uravnenii v sluchae neogranichennoi oblasti”, Izv. AN SSSR. Ser. matem., 31:5 (1967), 1179–1199 | MR | Zbl

[12] V. G. Maz'ya, S. V. Poborchi, “Existence and uniqueness of an energy solution to the Dirichlet problem for the Laplace equation in the exterior of a multi-dimensional paraboloid”, J. Math. Sci. (N.Y.), 172:4 (2011), 532–554 | DOI | MR

[13] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR

[14] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR