On Algebras of Double Cosets of Symmetric Groups with Respect to Young Subgroups
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 591-601
Voir la notice de l'article provenant de la source Math-Net.Ru
In the group algebra of the symmetric group $G=S_{n_1+\dots+n_\nu}$, we consider the subalgebra $\Delta$ consisting of all functions invariant with respect to left and right shifts by elements of the Young subgroup $H:=S_{n_1}\times \dots \times S_{n_\nu}$. We discuss structure constants of the algebra $\Delta$ and construct an algebra with continuous parameters $n_1,\dots,n_j$ extrapolating algebras $\Delta$, this can also be rewritten as an asymptotic algebra as $n_j\to\infty$ (for fixed $\nu$). We show that there is a natural map from the Lie algebra of the group of pure braids to $\Delta$ (and therefore this Lie algebra acts in spaces of multiplicities of the quasiregular representation of the group $G$ in functions on $G/H$).
Keywords:
symmetric group, double cosets, Lie algebra of the group of braids,
hypergeometric functions
Mots-clés : Poisson algebra.
Mots-clés : Poisson algebra.
@article{MZM_2023_114_4_a7,
author = {Yu. A. Neretin},
title = {On {Algebras} of {Double} {Cosets} of {Symmetric} {Groups} with {Respect} to {Young} {Subgroups}},
journal = {Matemati\v{c}eskie zametki},
pages = {591--601},
publisher = {mathdoc},
volume = {114},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a7/}
}
Yu. A. Neretin. On Algebras of Double Cosets of Symmetric Groups with Respect to Young Subgroups. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 591-601. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a7/