Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_4_a7, author = {Yu. A. Neretin}, title = {On {Algebras} of {Double} {Cosets} of {Symmetric} {Groups} with {Respect} to {Young} {Subgroups}}, journal = {Matemati\v{c}eskie zametki}, pages = {591--601}, publisher = {mathdoc}, volume = {114}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a7/} }
Yu. A. Neretin. On Algebras of Double Cosets of Symmetric Groups with Respect to Young Subgroups. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 591-601. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a7/
[1] D. Bump, Hecke Algebras, , 2010 http://sporadic.stanford.edu/bump/math263/hecke.pdf
[2] I. M. Gelfand, “Sfericheskie funktsii na rimanovykh simmetricheskikh prostranstvakh”, Dokl. AN SSSR, 70 (1950), 5–8 | MR
[3] N. Iwahori, “On the structure of a Hecke ring of a Chevalley group over a finite field”, J. Fac. Sci. Univ. Tokyo Sect. I, 10 (1964), 215–236 | MR
[4] T. Yokonuma, “Sur la structure des anneaux de Hecke d'un groupe de Chevalley fini”, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A344–A347 | MR
[5] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special Functions: Group Theoretical Aspects and Applications, Math. Appl., eds. R. A. Askey, T. H. Koornwinder, W. Schempp, Reidel, Dordrecht, 1984, 1–85 | MR
[6] M. Flensted-Jensen, T. Koornwinder, “The convolution structure for Jacobi function expansions”, Ark. Mat., 11 (1973), 245–262 | DOI | MR
[7] F. A. Berezin, I. M. Gelfand, “Neskolko zamechanii k teorii sfericheskikh funktsii na simmetricheskikh rimanovykh mnogoobraziyakh”, Tr. MMO, 5, GITTL, M., 1956, 311–351 | MR | Zbl
[8] M. Rösler, M. Voit, “$\operatorname{SU}(d)$-biinvariant random walks on $\operatorname{SL}(d,\mathbb{C})$ and their Euclidean counterparts”, Acta Appl. Math., 90:1–2 (2006), 179–195 | DOI | MR
[9] V. N. Ivanov, S. V. Kerov, “Algebra klassov sopryazhennosti v simmetricheskikh gruppakh i chastichnye perestanovki”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. III, Zap. nauchn. sem. POMI, 256, POMI, SPb., 1999, 95–120 | MR | Zbl
[10] P.-L. Méliot, “Partial isomorphisms over finite fields”, J. Algebraic Combin., 40:1 (2014), 83–136 | DOI | MR
[11] G. I. Olshanski, “On semigroups related to infinite-dimensional groups”, Topics in Representation Theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 67–101 | MR
[12] Yu. A. Neretin, “Beskonechnaya simmetricheskaya gruppa i kombinatornye konstruktsii tipa topologicheskikh teorii polya”, UMN, 70:4 (424) (2015), 143–204 | DOI | MR | Zbl
[13] Yu. A. Neretin, Algebras of conjugacy classes in symmetric groups, arXiv: 1604.05755
[14] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, Reading, MA, 1981 | MR
[15] N. I. Nessonov, “Predstavleniya $\mathfrak{S}_\infty$, dopustimye otnositelno podgrupp Yunga”, Matem. sb., 203:3 (2012), 127–160 | DOI | MR | Zbl
[16] A. R. Jones, “A combinatorial approach to the double cosets of the symmetric group with respect to Young subgroups”, European J. Combin., 17:7 (1996), 647–655 | DOI | MR
[17] P. Diaconis, M. Simper, “Statistical enumeration of groups by double cosets”, J. Algebra, 607 (2022), 214–246 | DOI | MR
[18] T. Ceccherini-Silberstein, F. Scarabotti, F. Tolli, Harmonic Analysis on Finite Groups. Representation Theory, Gelfand Pairs and Markov Chains, Cambridge Stud. Adv. Math., 108, Cambridge Univ. Press, Cambridge, 2008 | MR
[19] A. I. Maltsev, “Ob odnom klasse odnorodnykh prostranstv”, Izv. AN SSSR. Ser. matem., 13:1 (1949), 9–32 | MR | Zbl
[20] A. I. Maltsev, “Obobschenno nilpotentnye algebry i ikh prisoedinennye gruppy”, Matem. sb., 25 (67):3 (1949), 347–366 | MR | Zbl
[21] T. Kohno, “Série de Poincaré–Koszul associée aux groupes de tresses pures”, Invent. Math., 82:1 (1985), 57–75 | DOI | MR
[22] M. A. Xicoténcatl, “The Lie algebra of the pure braid group”, Bol. Soc. Mat. Mexicana (3), 6:1 (2000), 55–62 | MR
[23] Yu. Neretin, “On topologies on Malcev completions of braid groups”, Mosc. Math. J., 12:4 (2012), 803–824 | DOI | MR
[24] T. Kohno, “Monodromy representations of braid groups and Yang–Baxter equations”, Ann. Inst. Fourier (Grenoble), 37:4 (1987), 139–160 | DOI | MR
[25] T. Kohno, “Linear representations of braid groups and classical Yang–Baxter equations”, Braids (Santa Cruz, CA, 1986), Contemp. Math., 78, eds. J. S. Birman, A. Libgober, Amer. Math. Soc., Providence, RI, 1988, 339–363 | MR
[26] A. Varchenko, Special Functions, KZ Type Equations, and Representation Theory, CBMS Reg. Conf. Ser. Math., 98, Amer. Math. Soc., Providence, RI, 2003 | MR
[27] A. A. Klyachko, “Spatial polygons and stable configurations of points in the projective line”, Algebraic Geometry and its Applications (Yaroslavl', 1992), Aspects Math., E25, eds. A. Tikhomirov, A. Tyurin, Vieweg, Braunschweig, 1994, 67–84 | MR
[28] V. Toledano Laredo, “A Kohno–Drinfeld theorem for quantum Weyl groups”, Duke Math. J., 112:3 (2002), 421–451 | MR